YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Effects of Trailing Edge Thickness on the Losses of Ultrahigh Lift Low Pressure Turbine Blades

    Source: Journal of Turbomachinery:;2014:;volume( 136 ):;issue: 008::page 81011
    Author:
    Zhou, Chao
    ,
    Hodson, Howard
    ,
    Himmel, Christoph
    DOI: 10.1115/1.4026456
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Experimental, numerical and analytical methods were used to investigate the effects of the blade trailing edge thickness on the profile loss of ultrahighlift lowpressure turbine blades. Two cascades, the T106C and the T2, were studied. The loss obtained based on the data at the blade trailing edge plane and the plane 0.3 Chord downstream of the trailing edge agree with each other for T106C blade with and without upstream wakes at different Reynolds numbers. The blade profile losses were broken down as the suction surface boundary loss, the pressure side boundary loss and the mixing loss downstream of the trailing edge for six Reynolds numbers. Trailing edge thicknesses varying from 1.4% to 4.7% pitch were investigated at a Reynolds number of 210,000. It was found that the flow distributions across the passage at the trailing edge planes were highly nonuniform. In particular, and as a result, the trailing edge base pressure was higher than the mixedout static pressure, so the contribution of the base pressure to the mixing loss downstream of the trailing edge plane was to reduce the loss. When the trailing edge thickness increases, there are three main effects: (1) the area with high base pressure region increases, which tends to reduce the downstream mixing loss; (2) the base pressure reduces, which tends to increase the loss; and (3) the flow diffusion downstream of the trailing edge, which tends to increase the loss. The overall result is the combined effect. For the T106C cascade, increasing the trailing edge thickness from 1.9% pitch to 2.8% pitch has a small effect on the loss. Further increasing the trailing edge thickness increases the loss. The T2 blade has a higher lift than the T106C blade, so the effects of the base pressure in reducing the mixing loss downstream of the trailing edge is more evident. The experimental results show that the profile loss first decreases and then increases as the trailing edge thickness increases. CFD, using the transition kد‰ SST model and the kد‰ SST model, provides good predictions of the aerodynamic performance. It was used to study the cases with trailing edge thicknesses of 1.4% pitch and 2.9% pitch. The profile loss is almost the same for these two trailing edge thickness. The results show that it is possible to use thicker blade trailing edges in low pressure turbines without aerodynamic penalty. This can lead to benefits in terms of mechanical integrity and manufacturing cost reductions.
    • Download: (1.548Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Effects of Trailing Edge Thickness on the Losses of Ultrahigh Lift Low Pressure Turbine Blades

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/156654
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorZhou, Chao
    contributor authorHodson, Howard
    contributor authorHimmel, Christoph
    date accessioned2017-05-09T01:13:46Z
    date available2017-05-09T01:13:46Z
    date issued2014
    identifier issn0889-504X
    identifier otherturbo_136_08_081011.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/156654
    description abstractExperimental, numerical and analytical methods were used to investigate the effects of the blade trailing edge thickness on the profile loss of ultrahighlift lowpressure turbine blades. Two cascades, the T106C and the T2, were studied. The loss obtained based on the data at the blade trailing edge plane and the plane 0.3 Chord downstream of the trailing edge agree with each other for T106C blade with and without upstream wakes at different Reynolds numbers. The blade profile losses were broken down as the suction surface boundary loss, the pressure side boundary loss and the mixing loss downstream of the trailing edge for six Reynolds numbers. Trailing edge thicknesses varying from 1.4% to 4.7% pitch were investigated at a Reynolds number of 210,000. It was found that the flow distributions across the passage at the trailing edge planes were highly nonuniform. In particular, and as a result, the trailing edge base pressure was higher than the mixedout static pressure, so the contribution of the base pressure to the mixing loss downstream of the trailing edge plane was to reduce the loss. When the trailing edge thickness increases, there are three main effects: (1) the area with high base pressure region increases, which tends to reduce the downstream mixing loss; (2) the base pressure reduces, which tends to increase the loss; and (3) the flow diffusion downstream of the trailing edge, which tends to increase the loss. The overall result is the combined effect. For the T106C cascade, increasing the trailing edge thickness from 1.9% pitch to 2.8% pitch has a small effect on the loss. Further increasing the trailing edge thickness increases the loss. The T2 blade has a higher lift than the T106C blade, so the effects of the base pressure in reducing the mixing loss downstream of the trailing edge is more evident. The experimental results show that the profile loss first decreases and then increases as the trailing edge thickness increases. CFD, using the transition kد‰ SST model and the kد‰ SST model, provides good predictions of the aerodynamic performance. It was used to study the cases with trailing edge thicknesses of 1.4% pitch and 2.9% pitch. The profile loss is almost the same for these two trailing edge thickness. The results show that it is possible to use thicker blade trailing edges in low pressure turbines without aerodynamic penalty. This can lead to benefits in terms of mechanical integrity and manufacturing cost reductions.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleThe Effects of Trailing Edge Thickness on the Losses of Ultrahigh Lift Low Pressure Turbine Blades
    typeJournal Paper
    journal volume136
    journal issue8
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.4026456
    journal fristpage81011
    journal lastpage81011
    identifier eissn1528-8900
    treeJournal of Turbomachinery:;2014:;volume( 136 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian