YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Convex Curvature Effects on Film Cooling Adiabatic Effectiveness

    Source: Journal of Turbomachinery:;2014:;volume( 136 ):;issue: 006::page 61015
    Author:
    Winka, James R.
    ,
    Anderson, Joshua B.
    ,
    Boyd, Emily J.
    ,
    Bogard, David G.
    ,
    Crawford, Michael E.
    DOI: 10.1115/1.4025691
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Surface curvature is known to have significant effects on film cooling performance, with convex curvature inducing increased film effectiveness and concave curvature causing decreased film effectiveness. Generally, these curvature effects have been presumed to scale with 2r/d at the film cooling hole location, where r is the radius of curvature and d is coolant hole diameter. In this study, the validity of this scaling of curvature effects are examined by performing experiments in regions of large and low curvature on a model vane. Single rows of cylindrical holes were placed at various locations along the high curvature section of the suction side of the vane. For the first series of experiments, a single row of holes was placed at two locations with different local surface curvature. The coolant hole diameters were then adjusted to match 2r/d values. Results from these experiments showed that there was better correspondence of film performance when using the 2r/d scaling, but there was not an exact matching of performance. A second series of experiments focused on evaluating the effects of curvature downstream of the coolant holes. One row of holes was placed at a position upstream of the highest curvature, while another row was placed at a downstream position such that the radius of curvature was equivalent for the two rows of holes. Results indicated that the local radius of curvature is not sufficient in understanding the performance of film cooling. Instead, the curvature envelope downstream of the coolant holes plays a significant role on the performance of film cooling for cylindrical holes.
    • Download: (3.968Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Convex Curvature Effects on Film Cooling Adiabatic Effectiveness

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/156618
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorWinka, James R.
    contributor authorAnderson, Joshua B.
    contributor authorBoyd, Emily J.
    contributor authorBogard, David G.
    contributor authorCrawford, Michael E.
    date accessioned2017-05-09T01:13:40Z
    date available2017-05-09T01:13:40Z
    date issued2014
    identifier issn0889-504X
    identifier otherturbo_136_06_061015.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/156618
    description abstractSurface curvature is known to have significant effects on film cooling performance, with convex curvature inducing increased film effectiveness and concave curvature causing decreased film effectiveness. Generally, these curvature effects have been presumed to scale with 2r/d at the film cooling hole location, where r is the radius of curvature and d is coolant hole diameter. In this study, the validity of this scaling of curvature effects are examined by performing experiments in regions of large and low curvature on a model vane. Single rows of cylindrical holes were placed at various locations along the high curvature section of the suction side of the vane. For the first series of experiments, a single row of holes was placed at two locations with different local surface curvature. The coolant hole diameters were then adjusted to match 2r/d values. Results from these experiments showed that there was better correspondence of film performance when using the 2r/d scaling, but there was not an exact matching of performance. A second series of experiments focused on evaluating the effects of curvature downstream of the coolant holes. One row of holes was placed at a position upstream of the highest curvature, while another row was placed at a downstream position such that the radius of curvature was equivalent for the two rows of holes. Results indicated that the local radius of curvature is not sufficient in understanding the performance of film cooling. Instead, the curvature envelope downstream of the coolant holes plays a significant role on the performance of film cooling for cylindrical holes.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleConvex Curvature Effects on Film Cooling Adiabatic Effectiveness
    typeJournal Paper
    journal volume136
    journal issue6
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.4025691
    journal fristpage61015
    journal lastpage61015
    identifier eissn1528-8900
    treeJournal of Turbomachinery:;2014:;volume( 136 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian