YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Offshore Mechanics and Arctic Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Offshore Mechanics and Arctic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Seabed Interaction Modeling Effects on the Global Response of Catenary Pipeline: A Case Study

    Source: Journal of Offshore Mechanics and Arctic Engineering:;2014:;volume( 136 ):;issue: 003::page 32001
    Author:
    Elosta, Hany
    ,
    Huang, Shan
    ,
    Incecik, Atilla
    DOI: 10.1115/1.4027177
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: A steel catenary riser (SCR) attached to a floating platform at its upper end encounters oscillations in and near its touchdown zone (TDZ), which results in interaction with the seabed. Field observations and design analysis of SCRs show that the highest stress and greatest fatigue damage occurred near the touchdown point where the SCR first touches the seabed soil. The challenges regarding the fatigue damage assessment of an SCR in the TDZ are primarily because of the nonlinear behavior of SCR–seabed interaction and considerable uncertainty in seabed interaction modeling and geotechnical parameters. Analysis techniques have been developed in the two main areas: SCR–seabed interaction modeling and the influence of the uncertainty in the geotechnical parameters on the dynamic response and fatigue performance of SCRs in the TDZ. Initially, this study discusses the significance of SCR–seabed interaction on the response of an SCR for deepwater applications when subjected to random waves on soft clay using the commercial code OrcaFlex for nonlinear time domain simulation. In the next step, this study investigates the sensitivity of fatigue performance to geotechnical parameters through a parametric study. It is proven that employing the improved lateral SCR–seabed interaction model with accurate prediction of soil stiffness and riser penetration with cyclic loading enables us to obtain dynamic global riser performance in the TDZ with better accuracy. The fatigue analyses results prove that the confounding results indicated by the previous research studies on the SCR in the TDZ are due to different geotechnical parameters imposed with the seabed interaction model. The main benefit of employing nonlinear seabed approach is to capture the entity of realistic soil interaction behavior in modeling and analysis and to predict the likelihood of the fatigue damage of the SCR with seabed interaction, thereby minimizing the risk of the loss of the containment with the associated environmental impact.
    • Download: (707.3Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Seabed Interaction Modeling Effects on the Global Response of Catenary Pipeline: A Case Study

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/156071
    Collections
    • Journal of Offshore Mechanics and Arctic Engineering

    Show full item record

    contributor authorElosta, Hany
    contributor authorHuang, Shan
    contributor authorIncecik, Atilla
    date accessioned2017-05-09T01:11:45Z
    date available2017-05-09T01:11:45Z
    date issued2014
    identifier issn0892-7219
    identifier otheromae_136_03_032001.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/156071
    description abstractA steel catenary riser (SCR) attached to a floating platform at its upper end encounters oscillations in and near its touchdown zone (TDZ), which results in interaction with the seabed. Field observations and design analysis of SCRs show that the highest stress and greatest fatigue damage occurred near the touchdown point where the SCR first touches the seabed soil. The challenges regarding the fatigue damage assessment of an SCR in the TDZ are primarily because of the nonlinear behavior of SCR–seabed interaction and considerable uncertainty in seabed interaction modeling and geotechnical parameters. Analysis techniques have been developed in the two main areas: SCR–seabed interaction modeling and the influence of the uncertainty in the geotechnical parameters on the dynamic response and fatigue performance of SCRs in the TDZ. Initially, this study discusses the significance of SCR–seabed interaction on the response of an SCR for deepwater applications when subjected to random waves on soft clay using the commercial code OrcaFlex for nonlinear time domain simulation. In the next step, this study investigates the sensitivity of fatigue performance to geotechnical parameters through a parametric study. It is proven that employing the improved lateral SCR–seabed interaction model with accurate prediction of soil stiffness and riser penetration with cyclic loading enables us to obtain dynamic global riser performance in the TDZ with better accuracy. The fatigue analyses results prove that the confounding results indicated by the previous research studies on the SCR in the TDZ are due to different geotechnical parameters imposed with the seabed interaction model. The main benefit of employing nonlinear seabed approach is to capture the entity of realistic soil interaction behavior in modeling and analysis and to predict the likelihood of the fatigue damage of the SCR with seabed interaction, thereby minimizing the risk of the loss of the containment with the associated environmental impact.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleSeabed Interaction Modeling Effects on the Global Response of Catenary Pipeline: A Case Study
    typeJournal Paper
    journal volume136
    journal issue3
    journal titleJournal of Offshore Mechanics and Arctic Engineering
    identifier doi10.1115/1.4027177
    journal fristpage32001
    journal lastpage32001
    identifier eissn1528-896X
    treeJournal of Offshore Mechanics and Arctic Engineering:;2014:;volume( 136 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian