contributor author | Archer, J. R. | |
contributor author | Fang, Tiegang | |
contributor author | Ferguson, Scott | |
contributor author | Buckner, Gregory D. | |
date accessioned | 2017-05-09T01:10:31Z | |
date available | 2017-05-09T01:10:31Z | |
date issued | 2014 | |
identifier issn | 1050-0472 | |
identifier other | md_136_04_044501.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/155624 | |
description abstract | This paper explores the simulationbased design optimization of a variable geometry spray (VGS) fuel injector. A multiobjective genetic algorithm (MOGA) is interfaced with commercial computational fluid dynamics (CFD) software and high performance computing capabilities to evaluate the spray characteristics of each VGS candidate design. A threepoint full factorial experimental design is conducted to identify significant design variables and to better understand possible variable interactions. The Pareto frontier of optimal designs reveals the inherent tradeoff between two performance objectives—actuator stroke and spray angle sensitivity. Analysis of these solutions provides insight into dependencies between design parameters and the performance objectives and is used to assess possible performance gains with respect to initial prototype configurations. These insights provide valuable design information for the continued development of this VGS technology. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | Multi Objective Design Optimization of a Variable Geometry Spray Fuel Injector | |
type | Journal Paper | |
journal volume | 136 | |
journal issue | 4 | |
journal title | Journal of Mechanical Design | |
identifier doi | 10.1115/1.4026263 | |
journal fristpage | 44501 | |
journal lastpage | 44501 | |
identifier eissn | 1528-9001 | |
tree | Journal of Mechanical Design:;2014:;volume( 136 ):;issue: 004 | |
contenttype | Fulltext | |