YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Mechanical Design
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Mechanical Design
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Global Performance Index System for Kinematic Optimization of Robotic Mechanism

    Source: Journal of Mechanical Design:;2014:;volume( 136 ):;issue: 003::page 31001
    Author:
    Zhang, Pu
    ,
    Yao, Zhenqiang
    ,
    Du, Zhengchun
    DOI: 10.1115/1.4026031
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Correct evaluation of robot performance has been a problem in the field of robotics. Many scholars have proposed a variety of performance indices, such as manipulability, condition number, and minimum singular value, to describe quantitatively the kinematic performance of a robotic mechanism. However, two questions remain: (1) how to describe the kinematic performance completely for the design of a robotic mechanism, and (2) how to comprehensively describe the global performance distribution characteristics in the workspace. This paper presents a global performance index system for kinematic optimization of a robotic mechanism based on Jacobian matrix, manipulability ellipsoid, and descriptive statistics theory that can comprehensively describe the kinematic performance and the performance distribution characteristics in a robot's workspace. First, the Jacobian matrix, a linear mapping from the joint space to the task space of a robotic mechanism, is analyzed, and the kinematic transmission ability indices and the kinematic transmission accuracy index are determined. Second, four indices, including global average value, global volatility, global skewness, and global kurtosis, are presented to describe the global performance index's distribution in the workspace. Third, the global performance index system is established to evaluate a robot's global kinematic performance based on the above analysis. Finally, a twodegrees of freedom (DOF) robotic mechanism is designed based on the global performance index system as a case, analysis of which shows that the final mechanism has good kinematic performance in the workspace. This demonstrates that the global performance index system proposed in this paper can be useful for the evaluation of the kinematic performance and kinematic optimization of a robotic mechanism.
    • Download: (1.924Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Global Performance Index System for Kinematic Optimization of Robotic Mechanism

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/155602
    Collections
    • Journal of Mechanical Design

    Show full item record

    contributor authorZhang, Pu
    contributor authorYao, Zhenqiang
    contributor authorDu, Zhengchun
    date accessioned2017-05-09T01:10:25Z
    date available2017-05-09T01:10:25Z
    date issued2014
    identifier issn1050-0472
    identifier othermd_136_03_031001.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/155602
    description abstractCorrect evaluation of robot performance has been a problem in the field of robotics. Many scholars have proposed a variety of performance indices, such as manipulability, condition number, and minimum singular value, to describe quantitatively the kinematic performance of a robotic mechanism. However, two questions remain: (1) how to describe the kinematic performance completely for the design of a robotic mechanism, and (2) how to comprehensively describe the global performance distribution characteristics in the workspace. This paper presents a global performance index system for kinematic optimization of a robotic mechanism based on Jacobian matrix, manipulability ellipsoid, and descriptive statistics theory that can comprehensively describe the kinematic performance and the performance distribution characteristics in a robot's workspace. First, the Jacobian matrix, a linear mapping from the joint space to the task space of a robotic mechanism, is analyzed, and the kinematic transmission ability indices and the kinematic transmission accuracy index are determined. Second, four indices, including global average value, global volatility, global skewness, and global kurtosis, are presented to describe the global performance index's distribution in the workspace. Third, the global performance index system is established to evaluate a robot's global kinematic performance based on the above analysis. Finally, a twodegrees of freedom (DOF) robotic mechanism is designed based on the global performance index system as a case, analysis of which shows that the final mechanism has good kinematic performance in the workspace. This demonstrates that the global performance index system proposed in this paper can be useful for the evaluation of the kinematic performance and kinematic optimization of a robotic mechanism.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleGlobal Performance Index System for Kinematic Optimization of Robotic Mechanism
    typeJournal Paper
    journal volume136
    journal issue3
    journal titleJournal of Mechanical Design
    identifier doi10.1115/1.4026031
    journal fristpage31001
    journal lastpage31001
    identifier eissn1528-9001
    treeJournal of Mechanical Design:;2014:;volume( 136 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian