YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Thermomechanical Modeling of Additive Manufacturing Large Parts

    Source: Journal of Manufacturing Science and Engineering:;2014:;volume( 136 ):;issue: 006::page 61007
    Author:
    Denlinger, Erik R.
    ,
    Irwin, Jeff
    ,
    Michaleris, Pan
    DOI: 10.1115/1.4028669
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: A finite element modeling strategy is developed to allow for the prediction of distortion accumulation in additive manufacturing (AM) large parts (on the order of meters). A 3D thermoelastoplastic analysis is performed using a hybrid quiet inactive element activation strategy combined with adaptive coarsening. At the beginning for the simulation, before material deposition commences, elements corresponding to deposition material are removed from the analysis, then elements are introduced in the model layer by layer in a quiet state with material properties rendering them irrelevant. As the moving energy source is applied on the part, elements are switched to active by restoring the actual material properties when the energy source is applied on them. A layer by layer coarsening strategy merging elements in lower layers of the build is also implemented such that while elements are added on the top of build, elements are merged below maintaining a low number of degrees of freedom in the model for the entire simulation. The effectiveness of the modeling strategy is demonstrated and experimentally validated on a large electron beam deposited Ti–6Al–4V part consisting of 107 deposition layers. The simulation and experiment show good agreement with a maximum error of 29%.
    • Download: (2.245Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Thermomechanical Modeling of Additive Manufacturing Large Parts

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/155553
    Collections
    • Journal of Manufacturing Science and Engineering

    Show full item record

    contributor authorDenlinger, Erik R.
    contributor authorIrwin, Jeff
    contributor authorMichaleris, Pan
    date accessioned2017-05-09T01:10:16Z
    date available2017-05-09T01:10:16Z
    date issued2014
    identifier issn1087-1357
    identifier othermanu_136_06_061007.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/155553
    description abstractA finite element modeling strategy is developed to allow for the prediction of distortion accumulation in additive manufacturing (AM) large parts (on the order of meters). A 3D thermoelastoplastic analysis is performed using a hybrid quiet inactive element activation strategy combined with adaptive coarsening. At the beginning for the simulation, before material deposition commences, elements corresponding to deposition material are removed from the analysis, then elements are introduced in the model layer by layer in a quiet state with material properties rendering them irrelevant. As the moving energy source is applied on the part, elements are switched to active by restoring the actual material properties when the energy source is applied on them. A layer by layer coarsening strategy merging elements in lower layers of the build is also implemented such that while elements are added on the top of build, elements are merged below maintaining a low number of degrees of freedom in the model for the entire simulation. The effectiveness of the modeling strategy is demonstrated and experimentally validated on a large electron beam deposited Ti–6Al–4V part consisting of 107 deposition layers. The simulation and experiment show good agreement with a maximum error of 29%.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleThermomechanical Modeling of Additive Manufacturing Large Parts
    typeJournal Paper
    journal volume136
    journal issue6
    journal titleJournal of Manufacturing Science and Engineering
    identifier doi10.1115/1.4028669
    journal fristpage61007
    journal lastpage61007
    identifier eissn1528-8935
    treeJournal of Manufacturing Science and Engineering:;2014:;volume( 136 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian