YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Quantifying Uncertainty in Multiscale Heat Conduction Calculations

    Source: Journal of Heat Transfer:;2014:;volume( 136 ):;issue: 011::page 111301
    Author:
    Marepalli, Prabhakar
    ,
    Murthy, Jayathi Y.
    ,
    Qiu, Bo
    ,
    Ruan, Xiulin
    DOI: 10.1115/1.4027348
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In recent years, there has been interest in employing atomistic computations to inform macroscale thermal transport analyses. In heat conduction simulations in semiconductors and dielectrics, for example, classical molecular dynamics (MD) is used to compute phonon relaxation times, from which material thermal conductivity may be inferred and used at the macroscale. A drawback of this method is the noise associated with MD simulation (here after referred to as MD noise), which is generated due to the possibility of multiple initial configurations corresponding to the same system temperature. When MD is used to compute phonon relaxation times, the spread may be as high as 20%. In this work, we propose a method to quantify the uncertainty in thermal conductivity computations due to MD noise, and its effect on the computation of the temperature distribution in heat conduction simulations. Bayesian inference is used to construct a probabilistic surrogate model for thermal conductivity as a function of temperature, accounting for the statistical spread in MD relaxation times. The surrogate model is used in probabilistic computations of the temperature field in macroscale Fourier conduction simulations. These simulations yield probability density functions (PDFs) of the spatial temperature distribution resulting from the PDFs of thermal conductivity. To allay the cost of probabilistic computations, a stochastic collocation technique based on generalized polynomial chaos (gPC) is used to construct a response surface for the variation of temperature (at each physical location in the domain) as a function of the random variables in the thermal conductivity model. Results are presented for the spatial variation of the probability density function of temperature as a function of spatial location in a typical heat conduction problem to establish the viability of the method.
    • Download: (2.443Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Quantifying Uncertainty in Multiscale Heat Conduction Calculations

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/155396
    Collections
    • Journal of Heat Transfer

    Show full item record

    contributor authorMarepalli, Prabhakar
    contributor authorMurthy, Jayathi Y.
    contributor authorQiu, Bo
    contributor authorRuan, Xiulin
    date accessioned2017-05-09T01:09:44Z
    date available2017-05-09T01:09:44Z
    date issued2014
    identifier issn0022-1481
    identifier otherht_136_11_111301.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/155396
    description abstractIn recent years, there has been interest in employing atomistic computations to inform macroscale thermal transport analyses. In heat conduction simulations in semiconductors and dielectrics, for example, classical molecular dynamics (MD) is used to compute phonon relaxation times, from which material thermal conductivity may be inferred and used at the macroscale. A drawback of this method is the noise associated with MD simulation (here after referred to as MD noise), which is generated due to the possibility of multiple initial configurations corresponding to the same system temperature. When MD is used to compute phonon relaxation times, the spread may be as high as 20%. In this work, we propose a method to quantify the uncertainty in thermal conductivity computations due to MD noise, and its effect on the computation of the temperature distribution in heat conduction simulations. Bayesian inference is used to construct a probabilistic surrogate model for thermal conductivity as a function of temperature, accounting for the statistical spread in MD relaxation times. The surrogate model is used in probabilistic computations of the temperature field in macroscale Fourier conduction simulations. These simulations yield probability density functions (PDFs) of the spatial temperature distribution resulting from the PDFs of thermal conductivity. To allay the cost of probabilistic computations, a stochastic collocation technique based on generalized polynomial chaos (gPC) is used to construct a response surface for the variation of temperature (at each physical location in the domain) as a function of the random variables in the thermal conductivity model. Results are presented for the spatial variation of the probability density function of temperature as a function of spatial location in a typical heat conduction problem to establish the viability of the method.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleQuantifying Uncertainty in Multiscale Heat Conduction Calculations
    typeJournal Paper
    journal volume136
    journal issue11
    journal titleJournal of Heat Transfer
    identifier doi10.1115/1.4027348
    journal fristpage111301
    journal lastpage111301
    identifier eissn1528-8943
    treeJournal of Heat Transfer:;2014:;volume( 136 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian