YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Development of a Device for the Nondestructive Thermal Diffusivity Determination of Combustion Chamber Deposits and Thin Coatings

    Source: Journal of Heat Transfer:;2014:;volume( 136 ):;issue: 007::page 71601
    Author:
    Hoffman, Mark A.
    ,
    Lawler, Benjamin J.
    ,
    Filipi, Zoran S.
    ,
    Gأ¼ralp, Orgun A.
    ,
    Najt, Paul M.
    DOI: 10.1115/1.4026908
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: An experimental radiation chamber has been developed to nondestructively measure the thermal diffusivity of a combustion chamber deposit (CCD) layer. The accumulation of CCD shifts the operability range of homogeneous charge compression ignition (HCCI) to lower loads where the fuel economy benefit of HCCI over a traditional spark ignition strategy is at a maximum. The formation and burnoff of CCD introduce operational variability, which increases the control system burden of a practical HCCI engine. To fully characterize the impact of CCD on HCCI combustion and develop strategies which limit the CCD imposed variability, the thermal and physical properties of HCCI CCD must be determined without destroying the morphology of the CCD layer. The radiation chamber device provides a controlled, inert atmosphere absent of cyclical pressure oscillations and fuel/air interactions found within an engine. The device exposes temperature probes coated with CCD to controlled heat flux pulses generated by a graphite emitter and a rotating disk. CCD layer thermal diffusivity is then calculated based on the phase delay of the subCCD temperature response relative to the response of the temperature probe when clean. This work validates the accuracy of the radiation chamber's diffusivity determination methodology by testing materials of known properties. Wafers of three different materials, whose thermal diffusivities span two orders of magnitude centered on predicted CCD diffusivity values, are installed over the temperature probes to act as CCD surrogates. Multiple thicknesses of each material are tested over a range of heat flux pulse durations. Diffusivity values determined from radiation chamber testing are independent of sample thickness with each of the three calibration materials. The radiation chamber diffusivity values exhibit a slight, but consistent underprediction for all wafers due to residual contact resistance at the wafer–probe interface. Overall, the validation studies establish the radiation chamber as an effective device for the nondestructive thermal diffusivity determination of thin insulative coatings. The similarity of expected CCD diffusivity values to those of the validation specimens instills confidence that the methodology and device presented herein can be successfully utilized in the characterization of HCCI CCD layers.
    • Download: (2.006Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Development of a Device for the Nondestructive Thermal Diffusivity Determination of Combustion Chamber Deposits and Thin Coatings

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/155295
    Collections
    • Journal of Heat Transfer

    Show full item record

    contributor authorHoffman, Mark A.
    contributor authorLawler, Benjamin J.
    contributor authorFilipi, Zoran S.
    contributor authorGأ¼ralp, Orgun A.
    contributor authorNajt, Paul M.
    date accessioned2017-05-09T01:09:29Z
    date available2017-05-09T01:09:29Z
    date issued2014
    identifier issn0022-1481
    identifier otherht_136_07_071601.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/155295
    description abstractAn experimental radiation chamber has been developed to nondestructively measure the thermal diffusivity of a combustion chamber deposit (CCD) layer. The accumulation of CCD shifts the operability range of homogeneous charge compression ignition (HCCI) to lower loads where the fuel economy benefit of HCCI over a traditional spark ignition strategy is at a maximum. The formation and burnoff of CCD introduce operational variability, which increases the control system burden of a practical HCCI engine. To fully characterize the impact of CCD on HCCI combustion and develop strategies which limit the CCD imposed variability, the thermal and physical properties of HCCI CCD must be determined without destroying the morphology of the CCD layer. The radiation chamber device provides a controlled, inert atmosphere absent of cyclical pressure oscillations and fuel/air interactions found within an engine. The device exposes temperature probes coated with CCD to controlled heat flux pulses generated by a graphite emitter and a rotating disk. CCD layer thermal diffusivity is then calculated based on the phase delay of the subCCD temperature response relative to the response of the temperature probe when clean. This work validates the accuracy of the radiation chamber's diffusivity determination methodology by testing materials of known properties. Wafers of three different materials, whose thermal diffusivities span two orders of magnitude centered on predicted CCD diffusivity values, are installed over the temperature probes to act as CCD surrogates. Multiple thicknesses of each material are tested over a range of heat flux pulse durations. Diffusivity values determined from radiation chamber testing are independent of sample thickness with each of the three calibration materials. The radiation chamber diffusivity values exhibit a slight, but consistent underprediction for all wafers due to residual contact resistance at the wafer–probe interface. Overall, the validation studies establish the radiation chamber as an effective device for the nondestructive thermal diffusivity determination of thin insulative coatings. The similarity of expected CCD diffusivity values to those of the validation specimens instills confidence that the methodology and device presented herein can be successfully utilized in the characterization of HCCI CCD layers.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleDevelopment of a Device for the Nondestructive Thermal Diffusivity Determination of Combustion Chamber Deposits and Thin Coatings
    typeJournal Paper
    journal volume136
    journal issue7
    journal titleJournal of Heat Transfer
    identifier doi10.1115/1.4026908
    journal fristpage71601
    journal lastpage71601
    identifier eissn1528-8943
    treeJournal of Heat Transfer:;2014:;volume( 136 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian