YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    An Experimental Study of Passive and Active Heat Transfer Enhancement in Microchannels

    Source: Journal of Heat Transfer:;2014:;volume( 136 ):;issue: 003::page 31901
    Author:
    Wang, Yingying
    ,
    Peles, Yoav
    DOI: 10.1115/1.4025558
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: An experimental study on singlephase heat transfer and fluid flow downstream a single microscale pillar in a microchannel was conducted. A secondary jet flow was issued from slits formed along the pillar. A comparison of the thermal performances of a plain microchannel, a microchannel with a pillar, and a microchannel with a jet issued from a pillar was performed to elucidate the merits of this heat transfer enhancement technique. It was found that the presence of a pillar upstream the heater enhanced the heat transfer; the addition of jet flow issued from a pillar further enhanced the heat transfer. At a Reynolds number of 730, an improvement of spatially averaged Nusselt number of 80% was achieved due to the combined effect of the pillar and the jet compared with the corresponding plain channel. Micro particle image velocimetry (خ¼PIV) measurements provided planar velocity fields at two planes along the channel height, and allowed flow structure visualization. Turbulent kinetic energy (TKE) was used to measure flow mixing and to quantify the hydrodynamic effect of the jet. It was shown that the TKE is closely related to the Nusselt number.
    • Download: (3.648Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      An Experimental Study of Passive and Active Heat Transfer Enhancement in Microchannels

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/155216
    Collections
    • Journal of Heat Transfer

    Show full item record

    contributor authorWang, Yingying
    contributor authorPeles, Yoav
    date accessioned2017-05-09T01:09:17Z
    date available2017-05-09T01:09:17Z
    date issued2014
    identifier issn0022-1481
    identifier otherht_136_03_031901.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/155216
    description abstractAn experimental study on singlephase heat transfer and fluid flow downstream a single microscale pillar in a microchannel was conducted. A secondary jet flow was issued from slits formed along the pillar. A comparison of the thermal performances of a plain microchannel, a microchannel with a pillar, and a microchannel with a jet issued from a pillar was performed to elucidate the merits of this heat transfer enhancement technique. It was found that the presence of a pillar upstream the heater enhanced the heat transfer; the addition of jet flow issued from a pillar further enhanced the heat transfer. At a Reynolds number of 730, an improvement of spatially averaged Nusselt number of 80% was achieved due to the combined effect of the pillar and the jet compared with the corresponding plain channel. Micro particle image velocimetry (خ¼PIV) measurements provided planar velocity fields at two planes along the channel height, and allowed flow structure visualization. Turbulent kinetic energy (TKE) was used to measure flow mixing and to quantify the hydrodynamic effect of the jet. It was shown that the TKE is closely related to the Nusselt number.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleAn Experimental Study of Passive and Active Heat Transfer Enhancement in Microchannels
    typeJournal Paper
    journal volume136
    journal issue3
    journal titleJournal of Heat Transfer
    identifier doi10.1115/1.4025558
    journal fristpage31901
    journal lastpage31901
    identifier eissn1528-8943
    treeJournal of Heat Transfer:;2014:;volume( 136 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian