Nonlinear Heat Transfer in a Two Layer Flow With Nanofluids by OHAMSource: Journal of Heat Transfer:;2014:;volume( 136 ):;issue: 002::page 21702DOI: 10.1115/1.4025432Publisher: The American Society of Mechanical Engineers (ASME)
Abstract: The problem of fully developed steady, laminar, incompressible flow in a vertical channel is studied analytically, one region is filled with water based copper nanofluid and the other region is filled with clear viscous fluid. The resulting coupled nonlinear ordinary differential equations (ODEs) are solved by optimal homotopy analysis method (OHAM). The convergence of our results is discussed by the socalled total average squared residual error. Analytical results are presented for different values of the physical parameters, such as the mixed convection parameters, the Brownian motion parameter, and thermophoresis parameter. Reversed flow is observed for sufficiently high buoyancy (mixed convection parameter). Further we investigate the effects of the Brownian motion parameter and thermophoresis parameter on the fluid flow and heat transfer at the interface of the two regions.
|
Collections
Show full item record
contributor author | Farooq, Umer | |
contributor author | Zhi | |
date accessioned | 2017-05-09T01:09:12Z | |
date available | 2017-05-09T01:09:12Z | |
date issued | 2014 | |
identifier issn | 0022-1481 | |
identifier other | ht_136_02_021702.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/155192 | |
description abstract | The problem of fully developed steady, laminar, incompressible flow in a vertical channel is studied analytically, one region is filled with water based copper nanofluid and the other region is filled with clear viscous fluid. The resulting coupled nonlinear ordinary differential equations (ODEs) are solved by optimal homotopy analysis method (OHAM). The convergence of our results is discussed by the socalled total average squared residual error. Analytical results are presented for different values of the physical parameters, such as the mixed convection parameters, the Brownian motion parameter, and thermophoresis parameter. Reversed flow is observed for sufficiently high buoyancy (mixed convection parameter). Further we investigate the effects of the Brownian motion parameter and thermophoresis parameter on the fluid flow and heat transfer at the interface of the two regions. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | Nonlinear Heat Transfer in a Two Layer Flow With Nanofluids by OHAM | |
type | Journal Paper | |
journal volume | 136 | |
journal issue | 2 | |
journal title | Journal of Heat Transfer | |
identifier doi | 10.1115/1.4025432 | |
journal fristpage | 21702 | |
journal lastpage | 21702 | |
identifier eissn | 1528-8943 | |
tree | Journal of Heat Transfer:;2014:;volume( 136 ):;issue: 002 | |
contenttype | Fulltext |