YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Isoflux Nusselt Number and Slip Length Formulae for Superhydrophobic Microchannels

    Source: Journal of Heat Transfer:;2014:;volume( 136 ):;issue: 001::page 12402
    Author:
    Enright, Ryan
    ,
    Hodes, Marc
    ,
    Salamon, Todd
    ,
    Muzychka, Yuri
    DOI: 10.1115/1.4024837
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: We analytically and numerically consider the hydrodynamic and thermal transport behavior of fully developed laminar flow through a superhydrophobic (SH) parallelplate channel. Hydrodynamic slip length, thermal slip length and heat flux are prescribed at each surface. We first develop a general expression for the Nusselt number valid for asymmetric velocity profiles. Next, we demonstrate that, in the limit of Stokes flow near the surface and an adiabatic and shearfree liquid–gas interface, both thermal and hydrodynamic slip lengths can be found by redefining existing solutions for conduction spreading resistances. Expressions for the thermal slip length for pillar and ridge surface topographies are determined. Comparison of fundamental halfspace solutions for the Laplace and Stokes equations facilitate the development of expressions for hydrodynamic slip length over pillarstructured surfaces based on existing solutions for the conduction spreading resistance from an isothermal source. Numerical validation is performed and an analysis of the idealized thermal transport behavior suggests conditions under which superhydrophobic microchannels may enhance heat transfer.
    • Download: (893.6Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Isoflux Nusselt Number and Slip Length Formulae for Superhydrophobic Microchannels

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/155176
    Collections
    • Journal of Heat Transfer

    Show full item record

    contributor authorEnright, Ryan
    contributor authorHodes, Marc
    contributor authorSalamon, Todd
    contributor authorMuzychka, Yuri
    date accessioned2017-05-09T01:09:10Z
    date available2017-05-09T01:09:10Z
    date issued2014
    identifier issn0022-1481
    identifier otherht_136_01_012402.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/155176
    description abstractWe analytically and numerically consider the hydrodynamic and thermal transport behavior of fully developed laminar flow through a superhydrophobic (SH) parallelplate channel. Hydrodynamic slip length, thermal slip length and heat flux are prescribed at each surface. We first develop a general expression for the Nusselt number valid for asymmetric velocity profiles. Next, we demonstrate that, in the limit of Stokes flow near the surface and an adiabatic and shearfree liquid–gas interface, both thermal and hydrodynamic slip lengths can be found by redefining existing solutions for conduction spreading resistances. Expressions for the thermal slip length for pillar and ridge surface topographies are determined. Comparison of fundamental halfspace solutions for the Laplace and Stokes equations facilitate the development of expressions for hydrodynamic slip length over pillarstructured surfaces based on existing solutions for the conduction spreading resistance from an isothermal source. Numerical validation is performed and an analysis of the idealized thermal transport behavior suggests conditions under which superhydrophobic microchannels may enhance heat transfer.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleIsoflux Nusselt Number and Slip Length Formulae for Superhydrophobic Microchannels
    typeJournal Paper
    journal volume136
    journal issue1
    journal titleJournal of Heat Transfer
    identifier doi10.1115/1.4024837
    journal fristpage12402
    journal lastpage12402
    identifier eissn1528-8943
    treeJournal of Heat Transfer:;2014:;volume( 136 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian