YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Fuel Cell Science and Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Fuel Cell Science and Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    In Situ Observation of Deformation Behavior of Membrane Electrode Assembly Under Humidity Cycles

    Source: Journal of Fuel Cell Science and Technology:;2014:;volume( 011 ):;issue: 005::page 51006
    Author:
    Kai, Yusuke
    ,
    Kitayama, Yuki
    ,
    Omiya, Masaki
    ,
    Uchiyama, Tomoaki
    ,
    Kumei, Hideyuki
    DOI: 10.1115/1.4028155
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The mechanical reliability of the membrane electrode assembly (MEA) in polymer electrolyte fuel cells (PEFCs) is a major concern with respect to fuel cell vehicles. When PEFCs generate power, water is generated. The proton exchange membrane (PEM) swells in wet conditions and shrinks in dry conditions. These cyclic conditions induce mechanical stress in the MEA, and cracks are formed. Failure of the MEA can result in leaking of fuel gases and reduced output power. Therefore, it is necessary to determine the mechanical reliability of the MEA under various mechanical and environmental conditions. The purpose of the present paper is to observe the deformation behavior of the MEA under humidity cycles. We have developed a device in which the constrained condition of the GDL is modeled by carbon bars of 100 to 500 خ¼m in diameter. The carbon bars are placed side by side and are pressed against the MEA. The device was placed in a temperature and humidity controlled chamber, and humidity cycles were applied to the specimen. During the tests, cross sections of the specimen were observed by microscope, and the strain was calculated based on the curvature of the specimen. The temperature in the test chamber was varied from 25 to 80 آ°C, and the relative humidity was varied from 50 to 100%RH, and the wet condition was also investigated. The results revealed that the MEA deformed significantly by swelling and residual deformation was observed under the dry condition, even for one humidity cycle. The crack formation criteria for one humidity cycle corresponded approximately with those of the static tensile tests. The results of the humidity cycle tests followed Coffin–Manson law, and the number of cycles until crack formation corresponded approximately with the results of the mechanical fatigue tests. These results will be valuable in the critical design of durable PEFCs.
    • Download: (2.707Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      In Situ Observation of Deformation Behavior of Membrane Electrode Assembly Under Humidity Cycles

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/155152
    Collections
    • Journal of Fuel Cell Science and Technology

    Show full item record

    contributor authorKai, Yusuke
    contributor authorKitayama, Yuki
    contributor authorOmiya, Masaki
    contributor authorUchiyama, Tomoaki
    contributor authorKumei, Hideyuki
    date accessioned2017-05-09T01:09:06Z
    date available2017-05-09T01:09:06Z
    date issued2014
    identifier issn2381-6872
    identifier otherfc_011_05_051006.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/155152
    description abstractThe mechanical reliability of the membrane electrode assembly (MEA) in polymer electrolyte fuel cells (PEFCs) is a major concern with respect to fuel cell vehicles. When PEFCs generate power, water is generated. The proton exchange membrane (PEM) swells in wet conditions and shrinks in dry conditions. These cyclic conditions induce mechanical stress in the MEA, and cracks are formed. Failure of the MEA can result in leaking of fuel gases and reduced output power. Therefore, it is necessary to determine the mechanical reliability of the MEA under various mechanical and environmental conditions. The purpose of the present paper is to observe the deformation behavior of the MEA under humidity cycles. We have developed a device in which the constrained condition of the GDL is modeled by carbon bars of 100 to 500 خ¼m in diameter. The carbon bars are placed side by side and are pressed against the MEA. The device was placed in a temperature and humidity controlled chamber, and humidity cycles were applied to the specimen. During the tests, cross sections of the specimen were observed by microscope, and the strain was calculated based on the curvature of the specimen. The temperature in the test chamber was varied from 25 to 80 آ°C, and the relative humidity was varied from 50 to 100%RH, and the wet condition was also investigated. The results revealed that the MEA deformed significantly by swelling and residual deformation was observed under the dry condition, even for one humidity cycle. The crack formation criteria for one humidity cycle corresponded approximately with those of the static tensile tests. The results of the humidity cycle tests followed Coffin–Manson law, and the number of cycles until crack formation corresponded approximately with the results of the mechanical fatigue tests. These results will be valuable in the critical design of durable PEFCs.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleIn Situ Observation of Deformation Behavior of Membrane Electrode Assembly Under Humidity Cycles
    typeJournal Paper
    journal volume11
    journal issue5
    journal titleJournal of Fuel Cell Science and Technology
    identifier doi10.1115/1.4028155
    journal fristpage51006
    journal lastpage51006
    identifier eissn2381-6910
    treeJournal of Fuel Cell Science and Technology:;2014:;volume( 011 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian