YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Fluids Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Fluids Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Flows Through Reconstructed Porous Media Using Immersed Boundary Methods

    Source: Journal of Fluids Engineering:;2014:;volume( 136 ):;issue: 004::page 40908
    Author:
    Nagendra, Krishnamurthy
    ,
    Tafti, Danesh K.
    DOI: 10.1115/1.4026102
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Understanding flow through real porous media is of considerable importance given their significance in a wide range of applications. Direct numerical simulations of such flows are very useful in their fundamental understanding. Past works have focused mainly on ordered and disordered arrays of regular shaped structures such as cylinders or spheres to emulate porous media. More recently, extension of these studies to more realistic pore spaces are available in the literature highlighting the enormous potential of such studies in helping the fundamental understanding of porelevel flow physics. In an effort to advance the simulation of realistic porous media flows further, an immersed boundary method (IBM) framework capable of simulating flows through arbitrary surface contours is used in conjunction with a stochastic reconstruction procedure based on simulated annealing. The developed framework is tested in a twodimensional channel with two types of porous sections—one created using a random assembly of square blocks and another using the stochastic reconstruction procedure. Numerous simulations are performed to demonstrate the capability of the developed framework. The computed pressure drops across the porous section are compared with predictions from the Darcy–Forchheimer equation for media composed of different structure sizes. Finally, the developed methodology is applied to study CO2 diffusion in porous spherical particles of varying porosities.
    • Download: (1.241Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Flows Through Reconstructed Porous Media Using Immersed Boundary Methods

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/154972
    Collections
    • Journal of Fluids Engineering

    Show full item record

    contributor authorNagendra, Krishnamurthy
    contributor authorTafti, Danesh K.
    date accessioned2017-05-09T01:08:29Z
    date available2017-05-09T01:08:29Z
    date issued2014
    identifier issn0098-2202
    identifier otherfe_136_04_040908.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/154972
    description abstractUnderstanding flow through real porous media is of considerable importance given their significance in a wide range of applications. Direct numerical simulations of such flows are very useful in their fundamental understanding. Past works have focused mainly on ordered and disordered arrays of regular shaped structures such as cylinders or spheres to emulate porous media. More recently, extension of these studies to more realistic pore spaces are available in the literature highlighting the enormous potential of such studies in helping the fundamental understanding of porelevel flow physics. In an effort to advance the simulation of realistic porous media flows further, an immersed boundary method (IBM) framework capable of simulating flows through arbitrary surface contours is used in conjunction with a stochastic reconstruction procedure based on simulated annealing. The developed framework is tested in a twodimensional channel with two types of porous sections—one created using a random assembly of square blocks and another using the stochastic reconstruction procedure. Numerous simulations are performed to demonstrate the capability of the developed framework. The computed pressure drops across the porous section are compared with predictions from the Darcy–Forchheimer equation for media composed of different structure sizes. Finally, the developed methodology is applied to study CO2 diffusion in porous spherical particles of varying porosities.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleFlows Through Reconstructed Porous Media Using Immersed Boundary Methods
    typeJournal Paper
    journal volume136
    journal issue4
    journal titleJournal of Fluids Engineering
    identifier doi10.1115/1.4026102
    journal fristpage40908
    journal lastpage40908
    identifier eissn1528-901X
    treeJournal of Fluids Engineering:;2014:;volume( 136 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian