Pressure Distribution in Confined Jet FlowSource: Journal of Fluids Engineering:;2014:;volume( 136 ):;issue: 003::page 31202DOI: 10.1115/1.4026438Publisher: The American Society of Mechanical Engineers (ASME)
Abstract: A momentum jet injected into a confined container breaks up to “diffusive turbulence†after traveling a critical distance. It has been argued that an adverse pressure gradient developing within the container, acting against the jet momentum flux, is responsible for this break up (Risso and Fabre, 1997,“Diffusive Turbulence in a Confined Jet Experiment,†J. Fluid Mech., 337, pp. 233–261; Voropayev et al., 2011, “Evolution of a Confined Turbulent Jet in a Long Cylindrical Cavity: Homogeneous Fluids,†Phys. Fluids, 23, 115106). Experimental evidence for this adverse pressure gradient is presented in this paper, supplemented by a controlvolume analysis to explain the results. The rise of pressure from the jetinjection level to a location beyond the jet break up xb is shown to be proportional to the jet momentum flux. The overall (integrated) sidewall friction on a control volume is negligible, compared to the increase of pressure, if the flow control volume extends beyond xb. For smaller lengths of the control volume, the side wall drag is not negligible compared to the pressure rise. The Reynolds number similarity was evident for jet Reynolds numbers above 6000. This work was motivated by its applications to degassing of crude oil stored in the U.S. Strategic Petroleum Reserves, which are slender salt caverns. To improve its quality, periodically oil is cycled through a degassing plant and injected back to the cavern as a jet, and the degassing time is critically dependent on jet dynamics.
|
Collections
Show full item record
contributor author | Liberzon, D. | |
contributor author | Fernando, H. J. S. | |
date accessioned | 2017-05-09T01:08:26Z | |
date available | 2017-05-09T01:08:26Z | |
date issued | 2014 | |
identifier issn | 0098-2202 | |
identifier other | fe_136_03_031202.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/154953 | |
description abstract | A momentum jet injected into a confined container breaks up to “diffusive turbulence†after traveling a critical distance. It has been argued that an adverse pressure gradient developing within the container, acting against the jet momentum flux, is responsible for this break up (Risso and Fabre, 1997,“Diffusive Turbulence in a Confined Jet Experiment,†J. Fluid Mech., 337, pp. 233–261; Voropayev et al., 2011, “Evolution of a Confined Turbulent Jet in a Long Cylindrical Cavity: Homogeneous Fluids,†Phys. Fluids, 23, 115106). Experimental evidence for this adverse pressure gradient is presented in this paper, supplemented by a controlvolume analysis to explain the results. The rise of pressure from the jetinjection level to a location beyond the jet break up xb is shown to be proportional to the jet momentum flux. The overall (integrated) sidewall friction on a control volume is negligible, compared to the increase of pressure, if the flow control volume extends beyond xb. For smaller lengths of the control volume, the side wall drag is not negligible compared to the pressure rise. The Reynolds number similarity was evident for jet Reynolds numbers above 6000. This work was motivated by its applications to degassing of crude oil stored in the U.S. Strategic Petroleum Reserves, which are slender salt caverns. To improve its quality, periodically oil is cycled through a degassing plant and injected back to the cavern as a jet, and the degassing time is critically dependent on jet dynamics. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | Pressure Distribution in Confined Jet Flow | |
type | Journal Paper | |
journal volume | 136 | |
journal issue | 3 | |
journal title | Journal of Fluids Engineering | |
identifier doi | 10.1115/1.4026438 | |
journal fristpage | 31202 | |
journal lastpage | 31202 | |
identifier eissn | 1528-901X | |
tree | Journal of Fluids Engineering:;2014:;volume( 136 ):;issue: 003 | |
contenttype | Fulltext |