YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Effects of Electric Fields on Stabilized Lifted Propane Flames

    Source: Journal of Energy Resources Technology:;2014:;volume( 136 ):;issue: 002::page 22203
    Author:
    Hutchins, Andrew R.
    ,
    Reach, William A.
    ,
    Kribs, James D.
    ,
    Lyons, Kevin M.
    DOI: 10.1115/1.4027407
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The effects that various charged electrodes, and associated electric fields, have on lifted propane flames have been investigated. Two electrodes were used to provide an electric field with potentials ranging from 0 to 11,000 V. The primary electrode was around the flame and the secondary electrode was the fuel nozzle. Electrode polarity and primary electrode location with various flame field locations (near, mid, far) were varied, resulting in a variety of flame behavior. Results show that the body force resultant from the bulk flow of formed ions, from a positively charged fuel nozzle, and grounded ring electrode, will increase flame liftoff height and, eventually, cause blowout. However, for the opposite polarity (positively charged ring electrode and grounded fuel nozzle), the flame progresses toward reattachment with increasing potentials. Observing the narrow window of flame blowout or reattachment (varying with polarity), it was observed that the lifted flame height fluctuations were increased with the presence of the grounded ring electrode, but reduced when the polarity was shifted to positive configuration (positively charged primary electrode). Flame hysteresis was observed when the ring electrode was positively charged and it was found that the hysteresis regime increased when the potential of the ring electrode was increased to 1500 V but had little changes at lower potentials. While the ring electrode was positively charged, a distinct hole was observed in the center of the flame. Several images are presented that show these flame holes that are present when the electrodes are charged.
    • Download: (2.796Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Effects of Electric Fields on Stabilized Lifted Propane Flames

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/154549
    Collections
    • Journal of Energy Resources Technology

    Show full item record

    contributor authorHutchins, Andrew R.
    contributor authorReach, William A.
    contributor authorKribs, James D.
    contributor authorLyons, Kevin M.
    date accessioned2017-05-09T01:07:06Z
    date available2017-05-09T01:07:06Z
    date issued2014
    identifier issn0195-0738
    identifier otherjert_136_02_022203.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/154549
    description abstractThe effects that various charged electrodes, and associated electric fields, have on lifted propane flames have been investigated. Two electrodes were used to provide an electric field with potentials ranging from 0 to 11,000 V. The primary electrode was around the flame and the secondary electrode was the fuel nozzle. Electrode polarity and primary electrode location with various flame field locations (near, mid, far) were varied, resulting in a variety of flame behavior. Results show that the body force resultant from the bulk flow of formed ions, from a positively charged fuel nozzle, and grounded ring electrode, will increase flame liftoff height and, eventually, cause blowout. However, for the opposite polarity (positively charged ring electrode and grounded fuel nozzle), the flame progresses toward reattachment with increasing potentials. Observing the narrow window of flame blowout or reattachment (varying with polarity), it was observed that the lifted flame height fluctuations were increased with the presence of the grounded ring electrode, but reduced when the polarity was shifted to positive configuration (positively charged primary electrode). Flame hysteresis was observed when the ring electrode was positively charged and it was found that the hysteresis regime increased when the potential of the ring electrode was increased to 1500 V but had little changes at lower potentials. While the ring electrode was positively charged, a distinct hole was observed in the center of the flame. Several images are presented that show these flame holes that are present when the electrodes are charged.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleEffects of Electric Fields on Stabilized Lifted Propane Flames
    typeJournal Paper
    journal volume136
    journal issue2
    journal titleJournal of Energy Resources Technology
    identifier doi10.1115/1.4027407
    journal fristpage22203
    journal lastpage22203
    identifier eissn1528-8994
    treeJournal of Energy Resources Technology:;2014:;volume( 136 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian