YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Computing and Information Science in Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Computing and Information Science in Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    On Generalized Jacobi–Bernstein Basis Transformation: Application of Multidegree Reduction of Bأ©zier Curves and Surfaces

    Source: Journal of Computing and Information Science in Engineering:;2014:;volume( 014 ):;issue: 004::page 41010
    Author:
    Doha, E. H.
    ,
    Bhrawy, A. H.
    ,
    Saker, M. A.
    DOI: 10.1115/1.4028633
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This paper formulates a new explicit expression for the generalized Jacobi polynomials (GJPs) in terms of Bernstein basis. We also establish and prove the basis transformation between the GJPs basis and Bernstein basis and vice versa. This transformation embeds the perfect leastsquare performance of the GJPs with the geometrical insight of the Bernstein form. Moreover, the GJPs with indexes corresponding to the number of endpoint constraints are the natural basis functions for leastsquare approximation of Bأ©zier curves and surfaces. Application to multidegree reduction (MDR) of Bأ©zier curves and surfaces in computer aided geometric design (CAGD) is given.
    • Download: (7.056Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      On Generalized Jacobi–Bernstein Basis Transformation: Application of Multidegree Reduction of Bأ©zier Curves and Surfaces

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/154253
    Collections
    • Journal of Computing and Information Science in Engineering

    Show full item record

    contributor authorDoha, E. H.
    contributor authorBhrawy, A. H.
    contributor authorSaker, M. A.
    date accessioned2017-05-09T01:06:10Z
    date available2017-05-09T01:06:10Z
    date issued2014
    identifier issn1530-9827
    identifier otherjcise_014_04_041010.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/154253
    description abstractThis paper formulates a new explicit expression for the generalized Jacobi polynomials (GJPs) in terms of Bernstein basis. We also establish and prove the basis transformation between the GJPs basis and Bernstein basis and vice versa. This transformation embeds the perfect leastsquare performance of the GJPs with the geometrical insight of the Bernstein form. Moreover, the GJPs with indexes corresponding to the number of endpoint constraints are the natural basis functions for leastsquare approximation of Bأ©zier curves and surfaces. Application to multidegree reduction (MDR) of Bأ©zier curves and surfaces in computer aided geometric design (CAGD) is given.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleOn Generalized Jacobi–Bernstein Basis Transformation: Application of Multidegree Reduction of Bأ©zier Curves and Surfaces
    typeJournal Paper
    journal volume14
    journal issue4
    journal titleJournal of Computing and Information Science in Engineering
    identifier doi10.1115/1.4028633
    journal fristpage41010
    journal lastpage41010
    identifier eissn1530-9827
    treeJournal of Computing and Information Science in Engineering:;2014:;volume( 014 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian