YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Computational and Nonlinear Dynamics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Computational and Nonlinear Dynamics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Motion Planning of Uncertain Ordinary Differential Equation Systems

    Source: Journal of Computational and Nonlinear Dynamics:;2014:;volume( 009 ):;issue: 003::page 31021
    Author:
    Hays, Joe
    ,
    Sandu, Adrian
    ,
    Sandu, Corina
    ,
    Hong, Dennis
    DOI: 10.1115/1.4026994
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This work presents a novel motion planning framework, rooted in nonlinear programming theory, that treats uncertain fully and underactuated dynamical systems described by ordinary differential equations. Uncertainty in multibody dynamical systems comes from various sources, such as system parameters, initial conditions, sensor and actuator noise, and external forcing. Treatment of uncertainty in design is of paramount practical importance because all reallife systems are affected by it, and poor robustness and suboptimal performance result if it is not accounted for in a given design. In this work uncertainties are modeled using generalized polynomial chaos and are solved quantitatively using a leastsquare collocation method. The computational efficiency of this approach enables the inclusion of uncertainty statistics in the nonlinear programming optimization process. As such, the proposed framework allows the user to pose, and answer, new design questions related to uncertain dynamical systems. Specifically, the new framework is explained in the context of forward, inverse, and hybrid dynamics formulations. The forward dynamics formulation, applicable to both fully and underactuated systems, prescribes deterministic actuator inputs that yield uncertain state trajectories. The inverse dynamics formulation is the dual to that of forward dynamics, and is only applicable to fully actuated systems; deterministic state trajectories are prescribed and yield uncertain actuator inputs. The inverse dynamics formulation is more computationally efficient as it requires only algebraic evaluations and completely avoids numerical integration. Finally, the hybrid dynamics formulation is applicable to underactuated systems where it leverages the benefits of inverse dynamics for actuated joints and forward dynamics for unactuated joints; it prescribes actuated state and unactuated input trajectories that yield uncertain unactuated states and uncertain actuated inputs. The benefits of the ability to quantify uncertainty when planning the motion of multibody dynamic systems are illustrated through several case studies. The resulting designs determine optimal motion plans—subject to deterministic and statistical constraints—for all possible systems within the probability space.
    • Download: (1.421Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Motion Planning of Uncertain Ordinary Differential Equation Systems

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/154189
    Collections
    • Journal of Computational and Nonlinear Dynamics

    Show full item record

    contributor authorHays, Joe
    contributor authorSandu, Adrian
    contributor authorSandu, Corina
    contributor authorHong, Dennis
    date accessioned2017-05-09T01:05:59Z
    date available2017-05-09T01:05:59Z
    date issued2014
    identifier issn1555-1415
    identifier othercnd_009_03_031021.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/154189
    description abstractThis work presents a novel motion planning framework, rooted in nonlinear programming theory, that treats uncertain fully and underactuated dynamical systems described by ordinary differential equations. Uncertainty in multibody dynamical systems comes from various sources, such as system parameters, initial conditions, sensor and actuator noise, and external forcing. Treatment of uncertainty in design is of paramount practical importance because all reallife systems are affected by it, and poor robustness and suboptimal performance result if it is not accounted for in a given design. In this work uncertainties are modeled using generalized polynomial chaos and are solved quantitatively using a leastsquare collocation method. The computational efficiency of this approach enables the inclusion of uncertainty statistics in the nonlinear programming optimization process. As such, the proposed framework allows the user to pose, and answer, new design questions related to uncertain dynamical systems. Specifically, the new framework is explained in the context of forward, inverse, and hybrid dynamics formulations. The forward dynamics formulation, applicable to both fully and underactuated systems, prescribes deterministic actuator inputs that yield uncertain state trajectories. The inverse dynamics formulation is the dual to that of forward dynamics, and is only applicable to fully actuated systems; deterministic state trajectories are prescribed and yield uncertain actuator inputs. The inverse dynamics formulation is more computationally efficient as it requires only algebraic evaluations and completely avoids numerical integration. Finally, the hybrid dynamics formulation is applicable to underactuated systems where it leverages the benefits of inverse dynamics for actuated joints and forward dynamics for unactuated joints; it prescribes actuated state and unactuated input trajectories that yield uncertain unactuated states and uncertain actuated inputs. The benefits of the ability to quantify uncertainty when planning the motion of multibody dynamic systems are illustrated through several case studies. The resulting designs determine optimal motion plans—subject to deterministic and statistical constraints—for all possible systems within the probability space.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleMotion Planning of Uncertain Ordinary Differential Equation Systems
    typeJournal Paper
    journal volume9
    journal issue3
    journal titleJournal of Computational and Nonlinear Dynamics
    identifier doi10.1115/1.4026994
    journal fristpage31021
    journal lastpage31021
    identifier eissn1555-1423
    treeJournal of Computational and Nonlinear Dynamics:;2014:;volume( 009 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian