YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Review of Biotransport Education in the 21st Century: Lessons Learned From Experts

    Source: Journal of Biomechanical Engineering:;2014:;volume( 136 ):;issue: 011::page 110401
    Author:
    Banerjee, Rupak K.
    ,
    D'Souza, Gavin A.
    ,
    Rylander, Christopher
    ,
    Devireddy, Ram
    DOI: 10.1115/1.4028414
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The field of bioengineering is relatively new and complex including multiple disciplines encompassing areas in science and engineering. Efforts including the National Science Foundation (NSF) sponsored Integrative Graduate Education and Research Traineeship (IGERT) and VaNTH Engineering Research Center in Bioengineering Educational Technologies have been made to establish and disseminate knowledge and proven methods for teaching bioengineering concepts. Further, the summer bioengineering conference (SBC), sponsored by the American Society of Mechanical Engineers' (ASME) Bioengineering Division, was established to provide a meeting place for engineering educators and students having common interests in biological systems. Of the many subdisciplines of bioengineering, biotransport is a key subject that has wide applicability to many issues in engineering, biology, medicine, pharmacology, and environmental science, among others. The absence of standard content, guidelines, and texts needed for teaching biotransport courses to students motivated the Biotransport committee of ASME's Bioengineering Division to establish a biotransport education initiative. Biotransport education workshop sessions were conducted during the SBC 2011, 2012, and 2013 as part of this initiative. The workshop sessions included presentations from experienced faculty covering a spectrum of information from general descriptions of undergraduate biotransport courses to very detailed outlines of graduate courses to successful teaching techniques. A list of texts and references available for teaching biotransport courses at undergraduate and graduate levels has been collated and documented based on the workshop presentations. Further, based on individual teaching experiences and methodologies shared by the presenters, it was noted that active learning techniques, including cooperative and collaborative learning, can be useful for teaching undergraduate courses while problem based learning (PBL) can be a beneficial method for graduate courses. The outcomes of the education initiative will help produce students who are knowledgeable in the subject of biotransport, facile in applying biotransport concepts for solving problems in various application areas, and comfortable with their own abilities as lifelong learners.
    • Download: (297.6Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Review of Biotransport Education in the 21st Century: Lessons Learned From Experts

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/154089
    Collections
    • Journal of Biomechanical Engineering

    Show full item record

    contributor authorBanerjee, Rupak K.
    contributor authorD'Souza, Gavin A.
    contributor authorRylander, Christopher
    contributor authorDevireddy, Ram
    date accessioned2017-05-09T01:05:40Z
    date available2017-05-09T01:05:40Z
    date issued2014
    identifier issn0148-0731
    identifier otherbio_136_11_110401.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/154089
    description abstractThe field of bioengineering is relatively new and complex including multiple disciplines encompassing areas in science and engineering. Efforts including the National Science Foundation (NSF) sponsored Integrative Graduate Education and Research Traineeship (IGERT) and VaNTH Engineering Research Center in Bioengineering Educational Technologies have been made to establish and disseminate knowledge and proven methods for teaching bioengineering concepts. Further, the summer bioengineering conference (SBC), sponsored by the American Society of Mechanical Engineers' (ASME) Bioengineering Division, was established to provide a meeting place for engineering educators and students having common interests in biological systems. Of the many subdisciplines of bioengineering, biotransport is a key subject that has wide applicability to many issues in engineering, biology, medicine, pharmacology, and environmental science, among others. The absence of standard content, guidelines, and texts needed for teaching biotransport courses to students motivated the Biotransport committee of ASME's Bioengineering Division to establish a biotransport education initiative. Biotransport education workshop sessions were conducted during the SBC 2011, 2012, and 2013 as part of this initiative. The workshop sessions included presentations from experienced faculty covering a spectrum of information from general descriptions of undergraduate biotransport courses to very detailed outlines of graduate courses to successful teaching techniques. A list of texts and references available for teaching biotransport courses at undergraduate and graduate levels has been collated and documented based on the workshop presentations. Further, based on individual teaching experiences and methodologies shared by the presenters, it was noted that active learning techniques, including cooperative and collaborative learning, can be useful for teaching undergraduate courses while problem based learning (PBL) can be a beneficial method for graduate courses. The outcomes of the education initiative will help produce students who are knowledgeable in the subject of biotransport, facile in applying biotransport concepts for solving problems in various application areas, and comfortable with their own abilities as lifelong learners.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleA Review of Biotransport Education in the 21st Century: Lessons Learned From Experts
    typeJournal Paper
    journal volume136
    journal issue11
    journal titleJournal of Biomechanical Engineering
    identifier doi10.1115/1.4028414
    journal fristpage110401
    journal lastpage110401
    identifier eissn1528-8951
    treeJournal of Biomechanical Engineering:;2014:;volume( 136 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian