YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Localized Vibration of a Microtubule Surrounded by Randomly Distributed Cross Linkers

    Source: Journal of Biomechanical Engineering:;2014:;volume( 136 ):;issue: 007::page 71002
    Author:
    Jin, M. Z.
    ,
    Ru, C. Q.
    DOI: 10.1115/1.4027413
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Based on finite element simulation, the present work studies free vibration of a microtubule surrounded by 3D randomly distributed cross linkers in living cells. A basic result of the present work is that transverse vibration modes associated with the lowest frequencies are highly localized, in sharp contrast to the throughlength modes predicted by the commonly used classic elastic foundation model. Our simulations show that the deflected length of localized modes increases with increasing frequency and approaches the entire length of microtubule when frequency approaches the minimum classic frequency given by the elastic foundation model. In particular, unlike the lengthsensitive classic frequencies predicted by the elastic foundation model, the lowest frequencies of localized modes predicted by the present model are insensitive to the length of microtubules and are at least 50% lower than the minimum classic frequency for infinitely long microtubules and could be one order of magnitude lower than the minimum classic frequency for shorter microtubules (only a few microns in length). These results suggest that the existing elastic foundation model may have overestimated the lowest frequencies of microtubules in vivo. Finally, based on our simulation results, some empirical relations are proposed for the critical (lowest) frequency of localized modes and the associated wave length. Compared to the classic elastic foundation model, the localized vibration modes and the associated wave lengths predicted by the present model are in better agreement with some known experimental observations.
    • Download: (804.6Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Localized Vibration of a Microtubule Surrounded by Randomly Distributed Cross Linkers

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/154026
    Collections
    • Journal of Biomechanical Engineering

    Show full item record

    contributor authorJin, M. Z.
    contributor authorRu, C. Q.
    date accessioned2017-05-09T01:05:29Z
    date available2017-05-09T01:05:29Z
    date issued2014
    identifier issn0148-0731
    identifier otherbio_136_07_071002.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/154026
    description abstractBased on finite element simulation, the present work studies free vibration of a microtubule surrounded by 3D randomly distributed cross linkers in living cells. A basic result of the present work is that transverse vibration modes associated with the lowest frequencies are highly localized, in sharp contrast to the throughlength modes predicted by the commonly used classic elastic foundation model. Our simulations show that the deflected length of localized modes increases with increasing frequency and approaches the entire length of microtubule when frequency approaches the minimum classic frequency given by the elastic foundation model. In particular, unlike the lengthsensitive classic frequencies predicted by the elastic foundation model, the lowest frequencies of localized modes predicted by the present model are insensitive to the length of microtubules and are at least 50% lower than the minimum classic frequency for infinitely long microtubules and could be one order of magnitude lower than the minimum classic frequency for shorter microtubules (only a few microns in length). These results suggest that the existing elastic foundation model may have overestimated the lowest frequencies of microtubules in vivo. Finally, based on our simulation results, some empirical relations are proposed for the critical (lowest) frequency of localized modes and the associated wave length. Compared to the classic elastic foundation model, the localized vibration modes and the associated wave lengths predicted by the present model are in better agreement with some known experimental observations.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleLocalized Vibration of a Microtubule Surrounded by Randomly Distributed Cross Linkers
    typeJournal Paper
    journal volume136
    journal issue7
    journal titleJournal of Biomechanical Engineering
    identifier doi10.1115/1.4027413
    journal fristpage71002
    journal lastpage71002
    identifier eissn1528-8951
    treeJournal of Biomechanical Engineering:;2014:;volume( 136 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian