YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Design, Calibration and Validation of a Novel 3D Printed Instrumented Spatial Linkage that Measures Changes in the Rotational Axes of the Tibiofemoral Joint

    Source: Journal of Biomechanical Engineering:;2014:;volume( 136 ):;issue: 001::page 11003
    Author:
    Bonny, Daniel P.
    ,
    Hull, M. L.
    ,
    Howell, S. M.
    DOI: 10.1115/1.4025528
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: An accurate axisfinding technique is required to measure any changes from normal caused by total knee arthroplasty in the flexion–extension (F–E) and longitudinal rotation (LR) axes of the tibiofemoral joint. In a previous paper, we computationally determined how best to design and use an instrumented spatial linkage (ISL) to locate the F–E and LR axes such that rotational and translational errors were minimized. However, the ISL was not built and consequently was not calibrated; thus the errors in locating these axes were not quantified on an actual ISL. Moreover, previous methods to calibrate an ISL used calibration devices with accuracies that were either undocumented or insufficient for the device to serve as a goldstandard. Accordingly, the objectives were to (1) construct an ISL using the previously established guidelines,(2) calibrate the ISL using an improved method, and (3) quantify the error in measuring changes in the F–E and LR axes. A 3D printed ISL was constructed and calibrated using a coordinate measuring machine, which served as a gold standard. Validation was performed using a fixture that represented the tibiofemoral joint with an adjustable F–E axis and the errors in measuring changes to the positions and orientations of the F–E and LR axes were quantified. The resulting root mean squared errors (RMSEs) of the calibration residuals using the new calibration method were 0.24, 0.33, and 0.15 mm for the anterior–posterior, medial–lateral, and proximal–distal positions, respectively, and 0.11, 0.10, and 0.09 deg for varus–valgus, flexion–extension, and internal–external orientations, respectively. All RMSEs were below 0.29% of the respective fullscale range. When measuring changes to the F–E or LR axes, each orientation error was below 0.5 deg; when measuring changes in the F–E axis, each position error was below 1.0 mm. The largest position RMSE was when measuring a medial–lateral change in the LR axis (1.2 mm). Despite the large size of the ISL, these calibration residuals were better than those for previously published ISLs, particularly when measuring orientations, indicating that using a more accurate gold standard was beneficial in limiting the calibration residuals. The validation method demonstrated that this ISL is capable of accurately measuring clinically important changes (i.e. 1 mm and 1 deg) in the F–E and LR axes.
    • Download: (951.6Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Design, Calibration and Validation of a Novel 3D Printed Instrumented Spatial Linkage that Measures Changes in the Rotational Axes of the Tibiofemoral Joint

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/153917
    Collections
    • Journal of Biomechanical Engineering

    Show full item record

    contributor authorBonny, Daniel P.
    contributor authorHull, M. L.
    contributor authorHowell, S. M.
    date accessioned2017-05-09T01:05:06Z
    date available2017-05-09T01:05:06Z
    date issued2014
    identifier issn0148-0731
    identifier otherbio_136_01_011003.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/153917
    description abstractAn accurate axisfinding technique is required to measure any changes from normal caused by total knee arthroplasty in the flexion–extension (F–E) and longitudinal rotation (LR) axes of the tibiofemoral joint. In a previous paper, we computationally determined how best to design and use an instrumented spatial linkage (ISL) to locate the F–E and LR axes such that rotational and translational errors were minimized. However, the ISL was not built and consequently was not calibrated; thus the errors in locating these axes were not quantified on an actual ISL. Moreover, previous methods to calibrate an ISL used calibration devices with accuracies that were either undocumented or insufficient for the device to serve as a goldstandard. Accordingly, the objectives were to (1) construct an ISL using the previously established guidelines,(2) calibrate the ISL using an improved method, and (3) quantify the error in measuring changes in the F–E and LR axes. A 3D printed ISL was constructed and calibrated using a coordinate measuring machine, which served as a gold standard. Validation was performed using a fixture that represented the tibiofemoral joint with an adjustable F–E axis and the errors in measuring changes to the positions and orientations of the F–E and LR axes were quantified. The resulting root mean squared errors (RMSEs) of the calibration residuals using the new calibration method were 0.24, 0.33, and 0.15 mm for the anterior–posterior, medial–lateral, and proximal–distal positions, respectively, and 0.11, 0.10, and 0.09 deg for varus–valgus, flexion–extension, and internal–external orientations, respectively. All RMSEs were below 0.29% of the respective fullscale range. When measuring changes to the F–E or LR axes, each orientation error was below 0.5 deg; when measuring changes in the F–E axis, each position error was below 1.0 mm. The largest position RMSE was when measuring a medial–lateral change in the LR axis (1.2 mm). Despite the large size of the ISL, these calibration residuals were better than those for previously published ISLs, particularly when measuring orientations, indicating that using a more accurate gold standard was beneficial in limiting the calibration residuals. The validation method demonstrated that this ISL is capable of accurately measuring clinically important changes (i.e. 1 mm and 1 deg) in the F–E and LR axes.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleDesign, Calibration and Validation of a Novel 3D Printed Instrumented Spatial Linkage that Measures Changes in the Rotational Axes of the Tibiofemoral Joint
    typeJournal Paper
    journal volume136
    journal issue1
    journal titleJournal of Biomechanical Engineering
    identifier doi10.1115/1.4025528
    journal fristpage11003
    journal lastpage11003
    identifier eissn1528-8951
    treeJournal of Biomechanical Engineering:;2014:;volume( 136 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian