Show simple item record

contributor authorWu, K.
contributor authorZhu, W. D.
date accessioned2017-05-09T01:04:54Z
date available2017-05-09T01:04:54Z
date issued2014
identifier issn0021-8936
identifier otherjam_081_06_061002.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/153840
description abstractParametric instability in a taut string with a periodically moving boundary, which is governed by a onedimensional wave equation with a periodically varying domain, is investigated. Parametric instability usually occurs when coefficients in governing differential equations of a system periodically vary, and the system is said to be parametrically excited. Since the governing partial differential equation of the string with a periodically moving boundary can be transformed to one with a fixed domain and periodically varying coefficients, the string is parametrically excited and instability caused by the periodically moving boundary is classified as parametric instability. The free linear vibration of a taut string with a constant tension, a fixed boundary, and a periodically moving boundary is studied first. The exact response of the linear model is obtained using the wave or d'Alembert solution. The parametric instability in the string features a bounded displacement and an unbounded vibratory energy, and parametric instability regions in the parameter plane are classified as periodi (i≥1) parametric instability regions, where period1 parametric instability regions are analytically obtained using the wave solution and the fixed point theory, and periodi (i>1) parametric instability regions are numerically calculated using bifurcation diagrams. If the periodic boundary movement profile of the string satisfies certain condition, only period1 parametric instability regions exist. However, parametric instability regions with higher period numbers can exist for a general periodic boundary movement profile. Three corresponding nonlinear models that consider coupled transverse and longitudinal vibrations of the string, only the transverse vibration, and coupled transverse and axial vibrations are introduced next. Responses and vibratory energies of the linear and nonlinear models are calculated for both stable and unstable cases using three numerical methods: Galerkin's method, the explicit finite difference method, and the implicit finite difference method; advantages and disadvantages of each method are discussed. Numerical results for the linear model can be verified using the exact wave solution, and those for the nonlinear models are compared with each other since there are no exact solutions for them. It is shown that for parameters in the parametric instability regions of the linear model, the responses and vibratory energies of the nonlinear models are close to those of the linear model, which indicates that the parametric instability in the linear model can also exist in the nonlinear models. The mechanism of the parametric instability is explained in the linear model and through axial strains in the third nonlinear model.
publisherThe American Society of Mechanical Engineers (ASME)
titleParametric Instability in a Taut String With a Periodically Moving Boundary
typeJournal Paper
journal volume81
journal issue6
journal titleJournal of Applied Mechanics
identifier doi10.1115/1.4026181
journal fristpage61002
journal lastpage61002
identifier eissn1528-9036
treeJournal of Applied Mechanics:;2014:;volume( 081 ):;issue: 006
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record