YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Applied Mechanics Reviews
    • View Item
    •   YE&T Library
    • ASME
    • Applied Mechanics Reviews
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Nanoscale Fluid Mechanics and Energy Conversion

    Source: Applied Mechanics Reviews:;2014:;volume( 066 ):;issue: 005::page 50803
    Author:
    Chen, Xi
    ,
    Xu, Baoxing
    ,
    Liu, Ling
    DOI: 10.1115/1.4026913
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Under nanoconfinement, fluid molecules and ions exhibit radically different configurations, properties, and energetics from those of their bulk counterparts. These unique characteristics of nanoconfined fluids, along with the unconventional interactions with solids at the nanoscale, have provided many opportunities for engineering innovation. With properly designed nanoconfinement, several nanofluidic systems have been devised in our group in the past several years to achieve energy conversion functions with high efficiencies. This review is dedicated to elucidating the unique characteristics of nanofluidics, introducing several novel nanofluidic systems combining nanoporous materials with functional fluids, and to unveiling their working mechanisms. In all these systems, the ultralarge surface area available in nanoporous materials provides an ideal platform for seamlessly interfacing with nanoconfined fluids, and efficiently converting energy between the mechanical, thermal, and electrical forms. These systems have been demonstrated to have great potentials for applications including energy dissipation/absorption, energy trapping, actuation, and energy harvesting. Their efficiencies can be further enhanced by designing efforts based upon improved understanding of nanofluidics, which represents an important addition to classical fluid mechanics. Through the few systems exemplified in this review, the emerging research field of nanoscale fluid mechanics may promote more exciting nanofluidic phenomena and mechanisms, with increasing applications by encompassing aspects of mechanics, materials, physics, chemistry, biology, etc.
    • Download: (5.805Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Nanoscale Fluid Mechanics and Energy Conversion

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/153703
    Collections
    • Applied Mechanics Reviews

    Show full item record

    contributor authorChen, Xi
    contributor authorXu, Baoxing
    contributor authorLiu, Ling
    date accessioned2017-05-09T01:04:31Z
    date available2017-05-09T01:04:31Z
    date issued2014
    identifier issn0003-6900
    identifier otheramr_066_05_050803.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/153703
    description abstractUnder nanoconfinement, fluid molecules and ions exhibit radically different configurations, properties, and energetics from those of their bulk counterparts. These unique characteristics of nanoconfined fluids, along with the unconventional interactions with solids at the nanoscale, have provided many opportunities for engineering innovation. With properly designed nanoconfinement, several nanofluidic systems have been devised in our group in the past several years to achieve energy conversion functions with high efficiencies. This review is dedicated to elucidating the unique characteristics of nanofluidics, introducing several novel nanofluidic systems combining nanoporous materials with functional fluids, and to unveiling their working mechanisms. In all these systems, the ultralarge surface area available in nanoporous materials provides an ideal platform for seamlessly interfacing with nanoconfined fluids, and efficiently converting energy between the mechanical, thermal, and electrical forms. These systems have been demonstrated to have great potentials for applications including energy dissipation/absorption, energy trapping, actuation, and energy harvesting. Their efficiencies can be further enhanced by designing efforts based upon improved understanding of nanofluidics, which represents an important addition to classical fluid mechanics. Through the few systems exemplified in this review, the emerging research field of nanoscale fluid mechanics may promote more exciting nanofluidic phenomena and mechanisms, with increasing applications by encompassing aspects of mechanics, materials, physics, chemistry, biology, etc.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleNanoscale Fluid Mechanics and Energy Conversion
    typeJournal Paper
    journal volume66
    journal issue5
    journal titleApplied Mechanics Reviews
    identifier doi10.1115/1.4026913
    journal fristpage50803
    journal lastpage50803
    identifier eissn0003-6900
    treeApplied Mechanics Reviews:;2014:;volume( 066 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian