YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Vibration and Acoustics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Vibration and Acoustics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Guided Tuning of Turbine Blades: A Practical Method to Avoid Operating at Resonance

    Source: Journal of Vibration and Acoustics:;2013:;volume( 135 ):;issue: 005::page 54502
    Author:
    Duong, Loc
    ,
    Murphy, Kevin D.
    ,
    Kazerounian, Kazem
    DOI: 10.1115/1.4024761
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In gas turbine applications, forced vibrations of turbine blades under resonant—or nearly resonant—conditions are undesirable. Usually in airfoil design procedures, at least the first three blade modes are required to be free of excitation in the operating speed range. However, not uncommonly, a blade may experience resonance at other higher natural frequencies. In an attempt to avoid resonant oscillations, the structural frequencies are tuned away from the excitation frequencies by changing the geometry of the blade. The typical iterative design process—of adding and removing material through restacking the airfoil sections—is laborious and in no way assures an optimal design. In response to the need for an effective and fast methodology, the guided tuning of turbine blades method (GTTB) is developed and presented in this paper. A practical tuning technique, the GTTB method is based on structural perturbations to the mass and stiffness at critical locations, as determined by the methodology described herein. This shifts the excited natural frequency out of the operating speed range, while leaving the other structural frequencies largely undisturbed. The methodology is demonstrated here in the redesign of an actual turbine blade. The numerical results are experimentally validated using a laser vibrometer. The results indicate that the proposed method is not computationally intensive and renders effective results that jibe with experiments.
    • Download: (575.2Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Guided Tuning of Turbine Blades: A Practical Method to Avoid Operating at Resonance

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/153655
    Collections
    • Journal of Vibration and Acoustics

    Show full item record

    contributor authorDuong, Loc
    contributor authorMurphy, Kevin D.
    contributor authorKazerounian, Kazem
    date accessioned2017-05-09T01:04:23Z
    date available2017-05-09T01:04:23Z
    date issued2013
    identifier issn1048-9002
    identifier othervib_135_5_054502.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/153655
    description abstractIn gas turbine applications, forced vibrations of turbine blades under resonant—or nearly resonant—conditions are undesirable. Usually in airfoil design procedures, at least the first three blade modes are required to be free of excitation in the operating speed range. However, not uncommonly, a blade may experience resonance at other higher natural frequencies. In an attempt to avoid resonant oscillations, the structural frequencies are tuned away from the excitation frequencies by changing the geometry of the blade. The typical iterative design process—of adding and removing material through restacking the airfoil sections—is laborious and in no way assures an optimal design. In response to the need for an effective and fast methodology, the guided tuning of turbine blades method (GTTB) is developed and presented in this paper. A practical tuning technique, the GTTB method is based on structural perturbations to the mass and stiffness at critical locations, as determined by the methodology described herein. This shifts the excited natural frequency out of the operating speed range, while leaving the other structural frequencies largely undisturbed. The methodology is demonstrated here in the redesign of an actual turbine blade. The numerical results are experimentally validated using a laser vibrometer. The results indicate that the proposed method is not computationally intensive and renders effective results that jibe with experiments.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleGuided Tuning of Turbine Blades: A Practical Method to Avoid Operating at Resonance
    typeJournal Paper
    journal volume135
    journal issue5
    journal titleJournal of Vibration and Acoustics
    identifier doi10.1115/1.4024761
    journal fristpage54502
    journal lastpage54502
    identifier eissn1528-8927
    treeJournal of Vibration and Acoustics:;2013:;volume( 135 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian