contributor author | Popoviؤ‡, Ivan | |
contributor author | Hodson, Howard P. | |
date accessioned | 2017-05-09T01:03:56Z | |
date available | 2017-05-09T01:03:56Z | |
date issued | 2013 | |
identifier issn | 0889-504X | |
identifier other | turb_135_06_061014.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/153527 | |
description abstract | This paper describes experimental and numerical investigations of a highlyloaded rotor blade with leakage (purge) flow injection through an upstream overlapping seal. The effects of both leakage mass flow rates and swirl have been studied to examine their effects on the aerothermal performance. As the leakage mass flow rate was increased, the loss generally increased. The increase in the losses was found to be nonlinear with the three distinct regimes of leakagemainstream interaction being identified. The varying sensitivity of the losses to the leakage fraction was linked to the effects of the upstream potential field of the blade on a vortical structure originating from the outer part of the seal. This vortical structure affected the interaction between the leakage and mainstream flows as it grew to become the hub passage vortex. Very limited cooling was provided by the leakage flows. The coolant was mainly concentrated close to the suction surface in the front part of the rotor platform and on the blade suction surface in the path of the passage vortex. However, the regions benefiting from cooling were also characterized by higher values of the heat transfer coefficient. As a consequence, the net heat flux reduction was small, and the leakage injection was thus deemed thermally neutral. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | Aerothermal Impact of the Interaction Between Hub Leakage and Mainstream Flows in Highly Loaded High Pressure Turbine Blades | |
type | Journal Paper | |
journal volume | 135 | |
journal issue | 6 | |
journal title | Journal of Turbomachinery | |
identifier doi | 10.1115/1.4023621 | |
journal fristpage | 61014 | |
journal lastpage | 61014 | |
identifier eissn | 1528-8900 | |
tree | Journal of Turbomachinery:;2013:;volume( 135 ):;issue: 006 | |
contenttype | Fulltext | |