Heat Transfer for the Film Cooled Vane of a 1 1/2 Stage High Pressure Transonic Turbine—Part II: Effect of Cooling Variation on the Vane Airfoil and Inner End WallSource: Journal of Turbomachinery:;2013:;volume( 135 ):;issue: 002::page 21028DOI: 10.1115/1.4006776Publisher: The American Society of Mechanical Engineers (ASME)
Abstract: The impact of film cooling on heat transfer is investigated for the highpressure vane of a 11/2 stage highpressure turbine operating at design corrected conditions. Cooling is supplied through three independently controllable circuits to holes in the inner and outer end wall, vane leading edge showerhead, and the pressure and suction surfaces of the airfoil, in addition to vane trailing edge slots. Four different overall cooling flow rates are investigated and one cooling circuit is varied independently. All results reported in this part of the paper are for a radial inlet temperature profile, one of the four profiles reported in part I of this paper. Part I describes the experimental setup, data quality, influence of inlet temperature profile, and influence of cooling when compared to a solid vane. This part of the paper shows that the addition of coolant reduces airfoil Stanton number by up to 60%. The largest reductions due to cooling are observed close to the inner end wall because the coolant to the majority of the vane is supplied by a plenum at the inside diameter. While the introduction of cooling has a significant impact on Stanton number, the impact of changing coolant flow rates is only observed for gauges near 5% span and on the inner end wall. This indicates that very little of the increased coolant mass flow reaches all the way to 90% span and the majority of the additional mass flow is injected into the core flow near the plenum. Turning off the vane outer cooling circuit that supplies coolant to the outer end wall holes, vane trailing edge slots, and three rows of holes on the pressure surface of the airfoil, has a local impact on Stanton number. Changes downstream of the holes on the airfoil pressure surface indicate that internal heat transfer from the coolant flowing inside the vane is important to the external heat transfer, suggesting that a conjugate heattransfer solution may be required to achieve good external heattransfer predictions in this area. Measurements on the inner end wall show that temperature reduction in the vane wake due to the trailing edge cooling is important to many points downstream of the vane.
|
Collections
Show full item record
contributor author | Kahveci, Harika S. | |
contributor author | Haldeman, Charles W. | |
contributor author | Mathison, Randall M. | |
contributor author | Dunn, Michael G. | |
date accessioned | 2017-05-09T01:03:34Z | |
date available | 2017-05-09T01:03:34Z | |
date issued | 2013 | |
identifier issn | 0889-504X | |
identifier other | turb_135_2_021028.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/153439 | |
description abstract | The impact of film cooling on heat transfer is investigated for the highpressure vane of a 11/2 stage highpressure turbine operating at design corrected conditions. Cooling is supplied through three independently controllable circuits to holes in the inner and outer end wall, vane leading edge showerhead, and the pressure and suction surfaces of the airfoil, in addition to vane trailing edge slots. Four different overall cooling flow rates are investigated and one cooling circuit is varied independently. All results reported in this part of the paper are for a radial inlet temperature profile, one of the four profiles reported in part I of this paper. Part I describes the experimental setup, data quality, influence of inlet temperature profile, and influence of cooling when compared to a solid vane. This part of the paper shows that the addition of coolant reduces airfoil Stanton number by up to 60%. The largest reductions due to cooling are observed close to the inner end wall because the coolant to the majority of the vane is supplied by a plenum at the inside diameter. While the introduction of cooling has a significant impact on Stanton number, the impact of changing coolant flow rates is only observed for gauges near 5% span and on the inner end wall. This indicates that very little of the increased coolant mass flow reaches all the way to 90% span and the majority of the additional mass flow is injected into the core flow near the plenum. Turning off the vane outer cooling circuit that supplies coolant to the outer end wall holes, vane trailing edge slots, and three rows of holes on the pressure surface of the airfoil, has a local impact on Stanton number. Changes downstream of the holes on the airfoil pressure surface indicate that internal heat transfer from the coolant flowing inside the vane is important to the external heat transfer, suggesting that a conjugate heattransfer solution may be required to achieve good external heattransfer predictions in this area. Measurements on the inner end wall show that temperature reduction in the vane wake due to the trailing edge cooling is important to many points downstream of the vane. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | Heat Transfer for the Film Cooled Vane of a 1 1/2 Stage High Pressure Transonic Turbine—Part II: Effect of Cooling Variation on the Vane Airfoil and Inner End Wall | |
type | Journal Paper | |
journal volume | 135 | |
journal issue | 2 | |
journal title | Journal of Turbomachinery | |
identifier doi | 10.1115/1.4006776 | |
journal fristpage | 21028 | |
journal lastpage | 21028 | |
identifier eissn | 1528-8900 | |
tree | Journal of Turbomachinery:;2013:;volume( 135 ):;issue: 002 | |
contenttype | Fulltext |