description abstract | The present study is geared towards quantifying the effects of film cooling holes on turbine internal cooling passages. In this regard, tests are conducted in a generic stationary model, with evenly distributed ribtype perturbators at 90 deg, constituting a passage blockage ratio of H/Dh = 0.3 and pitchtoheight ratio of P/H = 10. The 1/3H diameter surfaceperpendicular film cooling holes are employed at a distance of 5/3H downstream of the preceding rib. Through liquid crystal thermometry measurements, the aerothermal effects of a change in suction ratio are contrasted for various configurations (Re = 40,000 SR = 0–6), and compared with the analogous aerodynamic literature, enabling heat transfer distributions to be associated with distinct flow structures. At increased suction ratio, the size of the separation bubble downstream of the rib is observed to diminish, triggering globally an earlier reattachment; in addition to lowmomentum hot fluid extraction via film cooling suction. Hence, in the presence of active flow extraction, higher overall heat transfer characteristics are observed throughout the channel. Moreover, the findings are generalized via friction factor and Nusselt number correlations, along with an analytical 20pitch passage model. SR ∼ 3.5 is observed to provide favorable characteristics of pitchtopitch uniform suction ratio, lack of hot fluid ingestion and to sustain the highest passage averaged heat transfer. | |