Integrated Outlet Guide Vane Design for an Aggressive S Shaped Compressor Transition DuctSource: Journal of Turbomachinery:;2013:;volume( 135 ):;issue: 001::page 11035DOI: 10.1115/1.4006331Publisher: The American Society of Mechanical Engineers (ASME)
Abstract: Within gas turbines the ability to design shorter aggressive Sshaped ducts is advantageous from a performance and weight saving perspective. However, current design philosophies tend to treat the Sshaped duct as an isolated component, neglecting the potential advantages of integrating the design with the upstream or downstream components. In this paper, such a design concept is numerically developed in which the upstream compressor outlet guide vanes are incorporated into the first bend of the Sshaped duct. Positioning the vane row within the first bend imparts a strong radial gradient to the pressure field within the vane passage. Tangential lean and axial sweep are employed such that the vane geometry is modified to exactly match the resulting inclined static pressure field. The integrated design is experimentally assessed and compared to a conventional nonintegrated design on a fully annular low speed test facility incorporating a single stage axial compressor. Several traverse planes are used to gather fivehole probe data which allow the flow structure to be examined through the rotor, outlet guide vane and within the transition ducts. The two designs employ almost identical duct geometry, but integration of the vane row reduces the system length by 21%. Due to successful matching of the static pressure field, the upstream influence of the integrated vane row is minimal and the rotor performance is unchanged. Similarly, the flow development within both Sshaped ducts is similar such that the circumferentially averaged profiles at duct exit are almost identical, and the operation of a downstream component would be unaffected. Overall system loss remains nominally unchanged despite the inclusion of lean and sweep and a reduction in system length. Finally, the numerical design predictions show good agreement with the experimental data thereby successfully validating the design process.
|
Collections
Show full item record
contributor author | Walker, A. D. | |
contributor author | Barker, A. G. | |
contributor author | Carrotte, J. F. | |
contributor author | Bolger, J. J. | |
contributor author | Green, M. J. | |
date accessioned | 2017-05-09T01:03:25Z | |
date available | 2017-05-09T01:03:25Z | |
date issued | 2013 | |
identifier issn | 0889-504X | |
identifier other | turb_135_1_011035.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/153398 | |
description abstract | Within gas turbines the ability to design shorter aggressive Sshaped ducts is advantageous from a performance and weight saving perspective. However, current design philosophies tend to treat the Sshaped duct as an isolated component, neglecting the potential advantages of integrating the design with the upstream or downstream components. In this paper, such a design concept is numerically developed in which the upstream compressor outlet guide vanes are incorporated into the first bend of the Sshaped duct. Positioning the vane row within the first bend imparts a strong radial gradient to the pressure field within the vane passage. Tangential lean and axial sweep are employed such that the vane geometry is modified to exactly match the resulting inclined static pressure field. The integrated design is experimentally assessed and compared to a conventional nonintegrated design on a fully annular low speed test facility incorporating a single stage axial compressor. Several traverse planes are used to gather fivehole probe data which allow the flow structure to be examined through the rotor, outlet guide vane and within the transition ducts. The two designs employ almost identical duct geometry, but integration of the vane row reduces the system length by 21%. Due to successful matching of the static pressure field, the upstream influence of the integrated vane row is minimal and the rotor performance is unchanged. Similarly, the flow development within both Sshaped ducts is similar such that the circumferentially averaged profiles at duct exit are almost identical, and the operation of a downstream component would be unaffected. Overall system loss remains nominally unchanged despite the inclusion of lean and sweep and a reduction in system length. Finally, the numerical design predictions show good agreement with the experimental data thereby successfully validating the design process. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | Integrated Outlet Guide Vane Design for an Aggressive S Shaped Compressor Transition Duct | |
type | Journal Paper | |
journal volume | 135 | |
journal issue | 1 | |
journal title | Journal of Turbomachinery | |
identifier doi | 10.1115/1.4006331 | |
journal fristpage | 11035 | |
journal lastpage | 11035 | |
identifier eissn | 1528-8900 | |
tree | Journal of Turbomachinery:;2013:;volume( 135 ):;issue: 001 | |
contenttype | Fulltext |