Experimental and Numerical Investigation of Flow Field and Downstream Surface Temperatures of Cylindrical and Diffuser Shaped Film Cooling Holes1Source: Journal of Turbomachinery:;2013:;volume( 135 ):;issue: 001::page 11026Author:Kampe, Tilman auf dem
,
Vأ¶lker, Stefan
,
Sأ¤mel, Torsten
,
Heneka, Christian
,
Ladisch, Helge
,
Schulz, Achmed
,
Bauer, Hans
DOI: 10.1115/1.4006336Publisher: The American Society of Mechanical Engineers (ASME)
Abstract: An experimental and numerical study of the flow field and the downstream film cooling performance of cylindrical and diffuser shaped cooling holes is presented. The measurements were conducted on a flat plate with a single cooling hole with coolant ejected from a plenum. The flow field was investigated by means of 3DPIV as well as 3DLDV measurements, the downstream film cooling effectiveness by means of infrared thermography. Cylindrical and diffuser holes without lateral inclination have been examined, varying blowing ratio and density ratio as well as freestream turbulence levels. 3DCFD simulations have been performed and validated along with the experimental efforts. The results, presented in terms of contour plots of the three normalized velocity components as well as adiabatic film cooling effectiveness, clearly show the flow structure of the film cooling jets and the differences brought about by the variation of hole geometry and flow parameters. The quantitative agreement between experiment and CFD was reasonable, with better agreement for cylindrical holes than for diffuser holes.
|
Collections
Show full item record
| contributor author | Kampe, Tilman auf dem | |
| contributor author | Vأ¶lker, Stefan | |
| contributor author | Sأ¤mel, Torsten | |
| contributor author | Heneka, Christian | |
| contributor author | Ladisch, Helge | |
| contributor author | Schulz, Achmed | |
| contributor author | Bauer, Hans | |
| date accessioned | 2017-05-09T01:03:20Z | |
| date available | 2017-05-09T01:03:20Z | |
| date issued | 2013 | |
| identifier issn | 0889-504X | |
| identifier other | turb_135_1_011026.pdf | |
| identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/153387 | |
| description abstract | An experimental and numerical study of the flow field and the downstream film cooling performance of cylindrical and diffuser shaped cooling holes is presented. The measurements were conducted on a flat plate with a single cooling hole with coolant ejected from a plenum. The flow field was investigated by means of 3DPIV as well as 3DLDV measurements, the downstream film cooling effectiveness by means of infrared thermography. Cylindrical and diffuser holes without lateral inclination have been examined, varying blowing ratio and density ratio as well as freestream turbulence levels. 3DCFD simulations have been performed and validated along with the experimental efforts. The results, presented in terms of contour plots of the three normalized velocity components as well as adiabatic film cooling effectiveness, clearly show the flow structure of the film cooling jets and the differences brought about by the variation of hole geometry and flow parameters. The quantitative agreement between experiment and CFD was reasonable, with better agreement for cylindrical holes than for diffuser holes. | |
| publisher | The American Society of Mechanical Engineers (ASME) | |
| title | Experimental and Numerical Investigation of Flow Field and Downstream Surface Temperatures of Cylindrical and Diffuser Shaped Film Cooling Holes1 | |
| type | Journal Paper | |
| journal volume | 135 | |
| journal issue | 1 | |
| journal title | Journal of Turbomachinery | |
| identifier doi | 10.1115/1.4006336 | |
| journal fristpage | 11026 | |
| journal lastpage | 11026 | |
| identifier eissn | 1528-8900 | |
| tree | Journal of Turbomachinery:;2013:;volume( 135 ):;issue: 001 | |
| contenttype | Fulltext |