YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Contrarotating Open Rotor Operation for Improved Aerodynamics and Noise at Takeoff

    Source: Journal of Turbomachinery:;2013:;volume( 135 ):;issue: 003::page 31010
    Author:
    Zachariadis, Alexios
    ,
    Hall, Cesare
    ,
    Parry, Anthony B.
    DOI: 10.1115/1.4006778
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The contrarotating open rotor is, once again, being considered as an alternative to the advanced turbofan to address the growing pressure to cut aviation fuel consumption and carbon dioxide emissions. One of the key challenges is meeting community noise targets at takeoff. Previous open rotor designs are subject to poor efficiency at takeoff due to the presence of large regions of separated flow on the blades as a result of the high incidence needed to achieve the required thrust. This is a consequence of the fixed rotor rotational speed constraint typical of variable pitch propellers. Within the study described in this paper, an improved operation is proposed to improve performance and reduce rotorrotor interaction noise at takeoff. Threedimensional computational fluid dynamics (CFD) calculations have been performed on an open rotor rig at a range of takeoff operating conditions. These have been complemented by analytical tone noise predictions to quantify the noise benefits of the approach. The results presented show that for a given thrust, a combination of reduced rotor pitch and increased rotor rotational speed can be used to reduce the incidence onto the front rotor blades. This is shown to eliminate regions of flow separation, reduce the front rotor tip loss and reduce the downstream stream tube contraction. The wakes from the front rotor are also made wider with lower velocity defect, which is found to lead to reduced interaction tone noise. Unfortunately, the necessary increase in blade speed leads to higher relative Mach numbers, which can increase rotor alone noise. In summary, the combined CFD and aeroacoustic analysis in this paper shows how careful operation of an open rotor at takeoff, with moderate levels of repitch and speed increase, can lead to improved front rotor efficiency as well as appreciably lower overall noise across all directivities.
    • Download: (2.631Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Contrarotating Open Rotor Operation for Improved Aerodynamics and Noise at Takeoff

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/153330
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorZachariadis, Alexios
    contributor authorHall, Cesare
    contributor authorParry, Anthony B.
    date accessioned2017-05-09T01:03:08Z
    date available2017-05-09T01:03:08Z
    date issued2013
    identifier issn0889-504X
    identifier otherturb_135_3_031010.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/153330
    description abstractThe contrarotating open rotor is, once again, being considered as an alternative to the advanced turbofan to address the growing pressure to cut aviation fuel consumption and carbon dioxide emissions. One of the key challenges is meeting community noise targets at takeoff. Previous open rotor designs are subject to poor efficiency at takeoff due to the presence of large regions of separated flow on the blades as a result of the high incidence needed to achieve the required thrust. This is a consequence of the fixed rotor rotational speed constraint typical of variable pitch propellers. Within the study described in this paper, an improved operation is proposed to improve performance and reduce rotorrotor interaction noise at takeoff. Threedimensional computational fluid dynamics (CFD) calculations have been performed on an open rotor rig at a range of takeoff operating conditions. These have been complemented by analytical tone noise predictions to quantify the noise benefits of the approach. The results presented show that for a given thrust, a combination of reduced rotor pitch and increased rotor rotational speed can be used to reduce the incidence onto the front rotor blades. This is shown to eliminate regions of flow separation, reduce the front rotor tip loss and reduce the downstream stream tube contraction. The wakes from the front rotor are also made wider with lower velocity defect, which is found to lead to reduced interaction tone noise. Unfortunately, the necessary increase in blade speed leads to higher relative Mach numbers, which can increase rotor alone noise. In summary, the combined CFD and aeroacoustic analysis in this paper shows how careful operation of an open rotor at takeoff, with moderate levels of repitch and speed increase, can lead to improved front rotor efficiency as well as appreciably lower overall noise across all directivities.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleContrarotating Open Rotor Operation for Improved Aerodynamics and Noise at Takeoff
    typeJournal Paper
    journal volume135
    journal issue3
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.4006778
    journal fristpage31010
    journal lastpage31010
    identifier eissn1528-8900
    treeJournal of Turbomachinery:;2013:;volume( 135 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian