YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Large Eddy Simulation With Zonal Near Wall Treatment of Flow and Heat Transfer in a Ribbed Duct for the Internal Cooling of Turbine Blades

    Source: Journal of Turbomachinery:;2013:;volume( 135 ):;issue: 003::page 31006
    Author:
    Patil, Sunil
    ,
    Tafti, Danesh
    DOI: 10.1115/1.4006640
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Large eddy simulations of flow and heat transfer in a square ribbed duct with rib height to hydraulic diameter of 0.1 and 0.05 and rib pitch to rib height ratio of 10 and 20 are carried out with the near wall region being modeled with a zonal two layer model. A novel formulation is used for solving the turbulent boundary layer equation for the effective tangential velocity in a generalized coordinate system in the near wall zonal treatment. A methodology to model the heat transfer in the zonal near wall layer in the large eddy simulations (LES) framework is presented. This general approach is explained for both Dirichlet and Neumann wall boundary conditions. Reynolds numbers of 20,000 and 60,000 are investigated. Predictions with wall modeled LES are compared with the hydrodynamic and heat transfer experimental data of (Rau et al. 1998, “The Effect of Periodic Ribs on the Local Aerodynamic and Heat Transfer Performance of a Straight Cooling Channel,â€‌ASME J. Turbomach., 120, pp. 368–375). and (Han et al. 1986, “Measurement of Heat Transfer and Pressure Drop in Rectangular Channels With Turbulence Promoters,â€‌ NASA Report No. 4015), and wall resolved LES data of Tafti (Tafti, 2004, “Evaluating the Role of Subgrid Stress Modeling in a Ribbed Duct for the Internal Cooling of Turbine Blades,â€‌ Int. J. Heat Fluid Flow 26, pp. 92–104). Friction factor, heat transfer coefficient, mean flow as well as turbulent statistics match available data closely with very good accuracy. Wall modeled LES at high Reynolds numbers as presented in this paper reduces the overall computational complexity by factors of 60–140 compared to resolved LES, without any significant loss in accuracy.
    • Download: (1.837Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Large Eddy Simulation With Zonal Near Wall Treatment of Flow and Heat Transfer in a Ribbed Duct for the Internal Cooling of Turbine Blades

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/153326
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorPatil, Sunil
    contributor authorTafti, Danesh
    date accessioned2017-05-09T01:03:07Z
    date available2017-05-09T01:03:07Z
    date issued2013
    identifier issn0889-504X
    identifier otherturb_135_3_031006.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/153326
    description abstractLarge eddy simulations of flow and heat transfer in a square ribbed duct with rib height to hydraulic diameter of 0.1 and 0.05 and rib pitch to rib height ratio of 10 and 20 are carried out with the near wall region being modeled with a zonal two layer model. A novel formulation is used for solving the turbulent boundary layer equation for the effective tangential velocity in a generalized coordinate system in the near wall zonal treatment. A methodology to model the heat transfer in the zonal near wall layer in the large eddy simulations (LES) framework is presented. This general approach is explained for both Dirichlet and Neumann wall boundary conditions. Reynolds numbers of 20,000 and 60,000 are investigated. Predictions with wall modeled LES are compared with the hydrodynamic and heat transfer experimental data of (Rau et al. 1998, “The Effect of Periodic Ribs on the Local Aerodynamic and Heat Transfer Performance of a Straight Cooling Channel,â€‌ASME J. Turbomach., 120, pp. 368–375). and (Han et al. 1986, “Measurement of Heat Transfer and Pressure Drop in Rectangular Channels With Turbulence Promoters,â€‌ NASA Report No. 4015), and wall resolved LES data of Tafti (Tafti, 2004, “Evaluating the Role of Subgrid Stress Modeling in a Ribbed Duct for the Internal Cooling of Turbine Blades,â€‌ Int. J. Heat Fluid Flow 26, pp. 92–104). Friction factor, heat transfer coefficient, mean flow as well as turbulent statistics match available data closely with very good accuracy. Wall modeled LES at high Reynolds numbers as presented in this paper reduces the overall computational complexity by factors of 60–140 compared to resolved LES, without any significant loss in accuracy.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleLarge Eddy Simulation With Zonal Near Wall Treatment of Flow and Heat Transfer in a Ribbed Duct for the Internal Cooling of Turbine Blades
    typeJournal Paper
    journal volume135
    journal issue3
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.4006640
    journal fristpage31006
    journal lastpage31006
    identifier eissn1528-8900
    treeJournal of Turbomachinery:;2013:;volume( 135 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian