YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Medical Devices
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Medical Devices
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Material Handling System for Robotic Natural Orifice Surgery

    Source: Journal of Medical Devices:;2013:;volume( 007 ):;issue: 001::page 11003
    Author:
    Midday, Jeff
    ,
    Nelson, Carl A.
    ,
    Goyzueta, Alan
    ,
    Oleynikov, Dmitry
    DOI: 10.1115/1.4023265
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Natural orifice translumenal endoscopic surgery (NOTES) is a relatively new surgical approach that uses no external incisions, thereby improving cosmetic outcomes, decreasing overall recovery time, and reducing the risk of external infection. In standard NOTES, flexible endoscopic tools have been used to carry out a variety of surgical procedures in the abdomen. As an alternative, miniature in vivo robots can be fully inserted into the peritoneal cavity and utilized to perform various surgical procedures. These in vivo robots eliminate tool triangulation issues, improve multitasking capabilities, and greatly increase freedom and dexterity when compared to standard endoscopic and laparoscopic tools. One major limitation is that once inserted, the in vivo robots are isolated within the abdomen and cannot send or receive materials to the external environment. The topic of this paper is a material handling system that has been developed to bridge this deficiency. This system features a flexible silicone overtube and an openloop control system with manual and automatic operation capabilities. The system utilizes the helix of a spring to advance a payload (staples, robotic tool tips, etc.) along the length of the overtube. The system functioned as intended in benchtop and in vivo testing. Minimum bend radius was identified, and a payload was successfully advanced and retrieved through the shuttling system in porcine surgical procedures. NOTES access was achieved via a custom built transvaginal trocar. This paper presents the design and rationale, control strategy, and in vivo testing results for the NOTES material handling system. The system performs as intended based on functional requirements as demonstrated in benchtop and porcine in vivo testing. The control method is robust even when pushed beyond the physical constraints of the system. Collectively, the material handling system provides a simple, repeatable way for an operator to interface with miniature in vivo robots, improving surgical system flexibility while minimizing impact on the duration of an abdominal surgical procedure.
    • Download: (1.548Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Material Handling System for Robotic Natural Orifice Surgery

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/152662
    Collections
    • Journal of Medical Devices

    Show full item record

    contributor authorMidday, Jeff
    contributor authorNelson, Carl A.
    contributor authorGoyzueta, Alan
    contributor authorOleynikov, Dmitry
    date accessioned2017-05-09T01:01:21Z
    date available2017-05-09T01:01:21Z
    date issued2013
    identifier issn1932-6181
    identifier othermed_7_1_011003.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/152662
    description abstractNatural orifice translumenal endoscopic surgery (NOTES) is a relatively new surgical approach that uses no external incisions, thereby improving cosmetic outcomes, decreasing overall recovery time, and reducing the risk of external infection. In standard NOTES, flexible endoscopic tools have been used to carry out a variety of surgical procedures in the abdomen. As an alternative, miniature in vivo robots can be fully inserted into the peritoneal cavity and utilized to perform various surgical procedures. These in vivo robots eliminate tool triangulation issues, improve multitasking capabilities, and greatly increase freedom and dexterity when compared to standard endoscopic and laparoscopic tools. One major limitation is that once inserted, the in vivo robots are isolated within the abdomen and cannot send or receive materials to the external environment. The topic of this paper is a material handling system that has been developed to bridge this deficiency. This system features a flexible silicone overtube and an openloop control system with manual and automatic operation capabilities. The system utilizes the helix of a spring to advance a payload (staples, robotic tool tips, etc.) along the length of the overtube. The system functioned as intended in benchtop and in vivo testing. Minimum bend radius was identified, and a payload was successfully advanced and retrieved through the shuttling system in porcine surgical procedures. NOTES access was achieved via a custom built transvaginal trocar. This paper presents the design and rationale, control strategy, and in vivo testing results for the NOTES material handling system. The system performs as intended based on functional requirements as demonstrated in benchtop and porcine in vivo testing. The control method is robust even when pushed beyond the physical constraints of the system. Collectively, the material handling system provides a simple, repeatable way for an operator to interface with miniature in vivo robots, improving surgical system flexibility while minimizing impact on the duration of an abdominal surgical procedure.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleMaterial Handling System for Robotic Natural Orifice Surgery
    typeJournal Paper
    journal volume7
    journal issue1
    journal titleJournal of Medical Devices
    identifier doi10.1115/1.4023265
    journal fristpage11003
    journal lastpage11003
    identifier eissn1932-619X
    treeJournal of Medical Devices:;2013:;volume( 007 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian