YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Thermal Response Modeling of Sheet Metals in Uniaxial Tension During Electrically Assisted Forming

    Source: Journal of Manufacturing Science and Engineering:;2013:;volume( 135 ):;issue: 002::page 21011
    Author:
    Jones, Joshua J.
    ,
    Mears, Laine
    DOI: 10.1115/1.4023366
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: For the current practice of improving fuel efficiency and reducing emissions in the automotive sector, it is becoming more common to use low density/high strength materials instead of costly engine/drivetrain technologies. With these materials there are normally many manufacturing difficulties that arise during their incorporation to the vehicle. As a result, new processes which improve the manufacturability of these materials are necessary. This work examines the manufacturing technique of electricallyassisted forming (EAF) where an electrical current is applied to the workpiece during deformation to modify the material's formability. In this work, the thermal response of sheet metal for stationary (i.e., no deformation) and deformation tests using this process are explored and modeled. The results of the model show good agreement for the stationary tests while for the deformation tests, the model predicts that all of the applied electrical current does not generate Joule heating. Thus, this work suggests from the observed response that a portion of the applied current may be directly aiding in deformation (i.e., the electroplastic effect). Additionally, the stress/strain response of Mg AZ31 under tensile forming using EAF is presented and compared to prior experimental work for this material.
    • Download: (1.929Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Thermal Response Modeling of Sheet Metals in Uniaxial Tension During Electrically Assisted Forming

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/152308
    Collections
    • Journal of Manufacturing Science and Engineering

    Show full item record

    contributor authorJones, Joshua J.
    contributor authorMears, Laine
    date accessioned2017-05-09T01:00:15Z
    date available2017-05-09T01:00:15Z
    date issued2013
    identifier issn1087-1357
    identifier othermanu_135_2_021011.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/152308
    description abstractFor the current practice of improving fuel efficiency and reducing emissions in the automotive sector, it is becoming more common to use low density/high strength materials instead of costly engine/drivetrain technologies. With these materials there are normally many manufacturing difficulties that arise during their incorporation to the vehicle. As a result, new processes which improve the manufacturability of these materials are necessary. This work examines the manufacturing technique of electricallyassisted forming (EAF) where an electrical current is applied to the workpiece during deformation to modify the material's formability. In this work, the thermal response of sheet metal for stationary (i.e., no deformation) and deformation tests using this process are explored and modeled. The results of the model show good agreement for the stationary tests while for the deformation tests, the model predicts that all of the applied electrical current does not generate Joule heating. Thus, this work suggests from the observed response that a portion of the applied current may be directly aiding in deformation (i.e., the electroplastic effect). Additionally, the stress/strain response of Mg AZ31 under tensile forming using EAF is presented and compared to prior experimental work for this material.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleThermal Response Modeling of Sheet Metals in Uniaxial Tension During Electrically Assisted Forming
    typeJournal Paper
    journal volume135
    journal issue2
    journal titleJournal of Manufacturing Science and Engineering
    identifier doi10.1115/1.4023366
    journal fristpage21011
    journal lastpage21011
    identifier eissn1528-8935
    treeJournal of Manufacturing Science and Engineering:;2013:;volume( 135 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian