YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Molecular Dynamics Simulation of Normal and Explosive Boiling on Nanostructured Surface

    Source: Journal of Heat Transfer:;2013:;volume( 135 ):;issue: 012::page 121503
    Author:
    Reza Seyf, Hamid
    ,
    Zhang, Yuwen
    DOI: 10.1115/1.4024668
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Molecular Dynamics (MD) simulation is carried out to investigate the normal and explosive boiling of thin film adsorbed on a metal substrate whose surface is structured by an array of nanoscale spherical particles. The molecular system is comprised of the liquid and vapor argon as well as a copper wall. The nanostructures have spherical shape with uniform diameters while the thickness of liquid film is constant. The effects of transvers and longitudinal distances as well as the diameter of nanoparticles are analyzed. The simulation is started from an initial configuration for three phases (liquid argon, vapor argon and solid wall); after equilibrating the system at 90 K, the wall is heated suddenly to a higher temperature that is well beyond the critical temperature of argon. Two different superheat degrees are selected: a moderately high temperature of 170 K for normal evaporation and much higher temperature 290 K for explosive boiling. By monitoring the space and time dependences of temperature and density as well as net evaporation rate, the normal and explosive boiling process on a flat surface with and without nanostructures are investigated. The results show that the nanostructure has significant effect on evaporation/boiling of thin film. The degrees of superheat and size of nanoparticles have significant effects on the trajectories of particles and net evaporation rate. For the cases with nanostructure, liquid responds very quickly and the number of evaporation molecules increases with increasing the size of particles from 1 to 2 nm while it decreases for d = 3 nm.
    • Download: (3.584Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Molecular Dynamics Simulation of Normal and Explosive Boiling on Nanostructured Surface

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/152275
    Collections
    • Journal of Heat Transfer

    Show full item record

    contributor authorReza Seyf, Hamid
    contributor authorZhang, Yuwen
    date accessioned2017-05-09T01:00:09Z
    date available2017-05-09T01:00:09Z
    date issued2013
    identifier issn0022-1481
    identifier otherht_135_12_121503.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/152275
    description abstractMolecular Dynamics (MD) simulation is carried out to investigate the normal and explosive boiling of thin film adsorbed on a metal substrate whose surface is structured by an array of nanoscale spherical particles. The molecular system is comprised of the liquid and vapor argon as well as a copper wall. The nanostructures have spherical shape with uniform diameters while the thickness of liquid film is constant. The effects of transvers and longitudinal distances as well as the diameter of nanoparticles are analyzed. The simulation is started from an initial configuration for three phases (liquid argon, vapor argon and solid wall); after equilibrating the system at 90 K, the wall is heated suddenly to a higher temperature that is well beyond the critical temperature of argon. Two different superheat degrees are selected: a moderately high temperature of 170 K for normal evaporation and much higher temperature 290 K for explosive boiling. By monitoring the space and time dependences of temperature and density as well as net evaporation rate, the normal and explosive boiling process on a flat surface with and without nanostructures are investigated. The results show that the nanostructure has significant effect on evaporation/boiling of thin film. The degrees of superheat and size of nanoparticles have significant effects on the trajectories of particles and net evaporation rate. For the cases with nanostructure, liquid responds very quickly and the number of evaporation molecules increases with increasing the size of particles from 1 to 2 nm while it decreases for d = 3 nm.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleMolecular Dynamics Simulation of Normal and Explosive Boiling on Nanostructured Surface
    typeJournal Paper
    journal volume135
    journal issue12
    journal titleJournal of Heat Transfer
    identifier doi10.1115/1.4024668
    journal fristpage121503
    journal lastpage121503
    identifier eissn1528-8943
    treeJournal of Heat Transfer:;2013:;volume( 135 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian