Design and Evaluation of a MEMS Based Stirling MicrocoolerSource: Journal of Heat Transfer:;2013:;volume( 135 ):;issue: 011::page 111003Author:Guo, Dongzhi
,
Gao, Jinsheng
,
McGaughey, Alan J. H.
,
Fedder, Gary K.
,
Moran, Matthew
,
Yao, Shi
DOI: 10.1115/1.4024596Publisher: The American Society of Mechanical Engineers (ASME)
Abstract: A new Stirling microrefrigeration system composed of arrays of silicon MEMS cooling elements has been designed and evaluated. The cooling elements are to be fabricated in a stacked array on a silicon wafer. A regenerator is placed between the compression (hot side) and expansion (cold side) diaphragms, which are driven electrostatically. Air at a pressure of 2 bar is the working fluid and is sealed in the system. Under operating conditions, the hot and cold diaphragms oscillate sinusoidally and out of phase such that heat is extracted to the expansion space and released from the compression space. Parametric study of the design shows the effects of phase lag between the hot space and cold space, swept volume ratio between the hot space and cold space, and dead volume ratio on the cooling power. Losses due to regenerator nonidealities are estimated and the effects of the operating frequency and the regenerator porosity on the cooler performance are explored. The optimal porosity for the best system coefficient of performance (COP) is identified.
|
Collections
Show full item record
| contributor author | Guo, Dongzhi | |
| contributor author | Gao, Jinsheng | |
| contributor author | McGaughey, Alan J. H. | |
| contributor author | Fedder, Gary K. | |
| contributor author | Moran, Matthew | |
| contributor author | Yao, Shi | |
| date accessioned | 2017-05-09T01:00:06Z | |
| date available | 2017-05-09T01:00:06Z | |
| date issued | 2013 | |
| identifier issn | 0022-1481 | |
| identifier other | ht_135_11_111003.pdf | |
| identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/152254 | |
| description abstract | A new Stirling microrefrigeration system composed of arrays of silicon MEMS cooling elements has been designed and evaluated. The cooling elements are to be fabricated in a stacked array on a silicon wafer. A regenerator is placed between the compression (hot side) and expansion (cold side) diaphragms, which are driven electrostatically. Air at a pressure of 2 bar is the working fluid and is sealed in the system. Under operating conditions, the hot and cold diaphragms oscillate sinusoidally and out of phase such that heat is extracted to the expansion space and released from the compression space. Parametric study of the design shows the effects of phase lag between the hot space and cold space, swept volume ratio between the hot space and cold space, and dead volume ratio on the cooling power. Losses due to regenerator nonidealities are estimated and the effects of the operating frequency and the regenerator porosity on the cooler performance are explored. The optimal porosity for the best system coefficient of performance (COP) is identified. | |
| publisher | The American Society of Mechanical Engineers (ASME) | |
| title | Design and Evaluation of a MEMS Based Stirling Microcooler | |
| type | Journal Paper | |
| journal volume | 135 | |
| journal issue | 11 | |
| journal title | Journal of Heat Transfer | |
| identifier doi | 10.1115/1.4024596 | |
| journal fristpage | 111003 | |
| journal lastpage | 111003 | |
| identifier eissn | 1528-8943 | |
| tree | Journal of Heat Transfer:;2013:;volume( 135 ):;issue: 011 | |
| contenttype | Fulltext |