YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Evaluation on the Power Generation Capacity of an Implantable Thermoelectric Generator Driven by Radioisotope Fuel

    Source: Journal of Heat Transfer:;2013:;volume( 135 ):;issue: 007::page 71004
    Author:
    Yang, Yang
    ,
    Liu, Jing
    DOI: 10.1115/1.4024065
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Embedding a thermoelectric generator (TEG) in a biological body is a promising way to supply electronic power in the long term for an implantable medical device (IMD). The unique merit of such a method lies in its direct utilization of the temperature difference intrinsically existing throughout the whole biological body. Therefore, it can resolve the service life mismatch between the IMD and its battery. In order to promote the stability of the powergeneration capacity of the implanted TEG, this paper is dedicated to study a low cost and highly safe practical pattern of implanting a TEG driven by the radioisotope fuel into a human body. Recurring to the thermal energy releasing during disintegration of the radioactive isotope, it can guarantee a marked promotion in the temperature difference across the implanted TEG, consequently supplying enough power for the IMDs. A bioheat transfer model with or without a large vessel is established to characterize the feasibility and working performance of the method. The numerical simulation and parametric studies on tissue status, device properties, and environmental conditions revealed that, no matter in what conditions, the implanted TEG driven by the radioisotope fuel can always offer a much higher energy output than that provided by body heat alone. Meanwhile, in vivo/surrounding environment, isotope conditions, and intentional skin surface cooling also exhibit a direct influence on the temperature distribution of the implantable TEG and thus affect the working performance. Coordinating with the intentionally imposed cooling on the skin surface, the maximum TEG power can reach several mW, which is strong enough to meet the power consumption of the IMDs. These results were expected to be a valuable reference for designing an implantable TEG, which may actually be used in future clinics.
    • Download: (1.964Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Evaluation on the Power Generation Capacity of an Implantable Thermoelectric Generator Driven by Radioisotope Fuel

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/152149
    Collections
    • Journal of Heat Transfer

    Show full item record

    contributor authorYang, Yang
    contributor authorLiu, Jing
    date accessioned2017-05-09T00:59:48Z
    date available2017-05-09T00:59:48Z
    date issued2013
    identifier issn0022-1481
    identifier otherht_135_7_071004.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/152149
    description abstractEmbedding a thermoelectric generator (TEG) in a biological body is a promising way to supply electronic power in the long term for an implantable medical device (IMD). The unique merit of such a method lies in its direct utilization of the temperature difference intrinsically existing throughout the whole biological body. Therefore, it can resolve the service life mismatch between the IMD and its battery. In order to promote the stability of the powergeneration capacity of the implanted TEG, this paper is dedicated to study a low cost and highly safe practical pattern of implanting a TEG driven by the radioisotope fuel into a human body. Recurring to the thermal energy releasing during disintegration of the radioactive isotope, it can guarantee a marked promotion in the temperature difference across the implanted TEG, consequently supplying enough power for the IMDs. A bioheat transfer model with or without a large vessel is established to characterize the feasibility and working performance of the method. The numerical simulation and parametric studies on tissue status, device properties, and environmental conditions revealed that, no matter in what conditions, the implanted TEG driven by the radioisotope fuel can always offer a much higher energy output than that provided by body heat alone. Meanwhile, in vivo/surrounding environment, isotope conditions, and intentional skin surface cooling also exhibit a direct influence on the temperature distribution of the implantable TEG and thus affect the working performance. Coordinating with the intentionally imposed cooling on the skin surface, the maximum TEG power can reach several mW, which is strong enough to meet the power consumption of the IMDs. These results were expected to be a valuable reference for designing an implantable TEG, which may actually be used in future clinics.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleEvaluation on the Power Generation Capacity of an Implantable Thermoelectric Generator Driven by Radioisotope Fuel
    typeJournal Paper
    journal volume135
    journal issue7
    journal titleJournal of Heat Transfer
    identifier doi10.1115/1.4024065
    journal fristpage71004
    journal lastpage71004
    identifier eissn1528-8943
    treeJournal of Heat Transfer:;2013:;volume( 135 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian