YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Fundamental Roles of Nonevaporating Film and Ultrahigh Heat Flux Associated With Nanoscale Meniscus Evaporation in Nucleate Boiling

    Source: Journal of Heat Transfer:;2013:;volume( 135 ):;issue: 006::page 61501
    Author:
    Maroo, Shalabh C.
    ,
    Chung, J. N.
    DOI: 10.1115/1.4023575
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The threephase moving contact line present at the base of a bubble in nucleate boiling has been a widely researched topic over the past few decades. It has been traditionally divided into three regions: nonevaporating film (order of nanometers), evaporating film (order of microns), and bulk meniscus (order of millimeters). This multiscale nature of the contact line has made it a challenging and complex problem, and led to an incomplete understanding of its dynamic behavior. The evaporating film and bulk meniscus regions have been investigated rigorously through analytical, numerical and experimental means; however, studies focused on the nonevaporating film region have been very sparse. The nanometer length scale and the fluidic nature of the nonevaporating film has limited the applicability of experimental techniques, while its numerical analysis has been questionable due to the presumed continuum behavior and lack of known input parameters, such as the Hamaker constant. Thus in order to gain fundamental insights and understanding, we have used molecular dynamics simulations to study the formation and characteristics of the nonevaporating film for the first time in published literature, and outlined a technique to obtain Hamaker constants from such simulations. Further, in this review, we have shown that the nonevaporating film can exist in a metastable state of reduced/negative liquid pressures. We have also performed molecular simulations of nanoscale meniscus evaporation, and shown that the associated ultrahigh heat flux is comparable to the maximumachievable kinetic limit of evaporation. Thus, the nonevaporating film and its adjacent nanoscale regions have a significant impact on the overall macroscale dynamics and heat flux behavior of nucleate boiling, and hence should be included in greater details in nucleate boiling simulations and analysis.
    • Download: (3.154Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Fundamental Roles of Nonevaporating Film and Ultrahigh Heat Flux Associated With Nanoscale Meniscus Evaporation in Nucleate Boiling

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/152135
    Collections
    • Journal of Heat Transfer

    Show full item record

    contributor authorMaroo, Shalabh C.
    contributor authorChung, J. N.
    date accessioned2017-05-09T00:59:46Z
    date available2017-05-09T00:59:46Z
    date issued2013
    identifier issn0022-1481
    identifier otherht_135_6_061501.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/152135
    description abstractThe threephase moving contact line present at the base of a bubble in nucleate boiling has been a widely researched topic over the past few decades. It has been traditionally divided into three regions: nonevaporating film (order of nanometers), evaporating film (order of microns), and bulk meniscus (order of millimeters). This multiscale nature of the contact line has made it a challenging and complex problem, and led to an incomplete understanding of its dynamic behavior. The evaporating film and bulk meniscus regions have been investigated rigorously through analytical, numerical and experimental means; however, studies focused on the nonevaporating film region have been very sparse. The nanometer length scale and the fluidic nature of the nonevaporating film has limited the applicability of experimental techniques, while its numerical analysis has been questionable due to the presumed continuum behavior and lack of known input parameters, such as the Hamaker constant. Thus in order to gain fundamental insights and understanding, we have used molecular dynamics simulations to study the formation and characteristics of the nonevaporating film for the first time in published literature, and outlined a technique to obtain Hamaker constants from such simulations. Further, in this review, we have shown that the nonevaporating film can exist in a metastable state of reduced/negative liquid pressures. We have also performed molecular simulations of nanoscale meniscus evaporation, and shown that the associated ultrahigh heat flux is comparable to the maximumachievable kinetic limit of evaporation. Thus, the nonevaporating film and its adjacent nanoscale regions have a significant impact on the overall macroscale dynamics and heat flux behavior of nucleate boiling, and hence should be included in greater details in nucleate boiling simulations and analysis.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleFundamental Roles of Nonevaporating Film and Ultrahigh Heat Flux Associated With Nanoscale Meniscus Evaporation in Nucleate Boiling
    typeJournal Paper
    journal volume135
    journal issue6
    journal titleJournal of Heat Transfer
    identifier doi10.1115/1.4023575
    journal fristpage61501
    journal lastpage61501
    identifier eissn1528-8943
    treeJournal of Heat Transfer:;2013:;volume( 135 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian