YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Flow and Heat Transfer Characteristics of Single Jet Impinging on Dimpled Surface

    Source: Journal of Heat Transfer:;2013:;volume( 135 ):;issue: 005::page 52201
    Author:
    Xie, Yonghui
    ,
    Li, Ping
    ,
    Lan, Jibing
    ,
    Zhang, Di
    DOI: 10.1115/1.4023360
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Based on combined particle image velocimetry (PIV) and numerical simulation, the flow and heat transfer characteristics of a single jet impinging on a dimpled surface for Dj/D = 0.318, 0.5, 1.045; خ´/D = 0.1, 0.2, 0.3; Rej = 5000, 10,000, 23,000, were investigated for the first time. The distance between jet nozzle and plate was fixed and equal to H/D = 2. The results show that the flow structures of the single jet impingement with dimpled target surface can be summarized into three typical conceptual flow structures. Particularly, the third flow structure in the form of a large toroidal vortex bound up with the dimple is the result of the centrifugal force of the flow deflection at the stagnation region and spherical centrifugal force of the deep dimple surface. The heat transfer area increases when the dimple relative depth increases. For the cases of Dj/D = 0.318 and 0.5, the area increasing dominate the heat transfer process, and the average Nusselt number increases with the increasing of dimple relative depth. For the cases with Dj/D = 1.045, the local Nusselt number reduction dominate the heat transfer process, the average Nusselt number decreases with the increasing of dimple relative depth. The average Nusselt number of the Dj/D = 0.318 and 0.5 cases is larger than the baseline case, while those of the Dj/D = 1.045 cases are smaller than the baseline case. Furthermore, the correlative expressions of the local Nusselt number, stagnation points Nusselt number and average Nusselt number are obtained.
    • Download: (5.197Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Flow and Heat Transfer Characteristics of Single Jet Impinging on Dimpled Surface

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/152114
    Collections
    • Journal of Heat Transfer

    Show full item record

    contributor authorXie, Yonghui
    contributor authorLi, Ping
    contributor authorLan, Jibing
    contributor authorZhang, Di
    date accessioned2017-05-09T00:59:44Z
    date available2017-05-09T00:59:44Z
    date issued2013
    identifier issn0022-1481
    identifier otherht_135_5_052201.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/152114
    description abstractBased on combined particle image velocimetry (PIV) and numerical simulation, the flow and heat transfer characteristics of a single jet impinging on a dimpled surface for Dj/D = 0.318, 0.5, 1.045; خ´/D = 0.1, 0.2, 0.3; Rej = 5000, 10,000, 23,000, were investigated for the first time. The distance between jet nozzle and plate was fixed and equal to H/D = 2. The results show that the flow structures of the single jet impingement with dimpled target surface can be summarized into three typical conceptual flow structures. Particularly, the third flow structure in the form of a large toroidal vortex bound up with the dimple is the result of the centrifugal force of the flow deflection at the stagnation region and spherical centrifugal force of the deep dimple surface. The heat transfer area increases when the dimple relative depth increases. For the cases of Dj/D = 0.318 and 0.5, the area increasing dominate the heat transfer process, and the average Nusselt number increases with the increasing of dimple relative depth. For the cases with Dj/D = 1.045, the local Nusselt number reduction dominate the heat transfer process, the average Nusselt number decreases with the increasing of dimple relative depth. The average Nusselt number of the Dj/D = 0.318 and 0.5 cases is larger than the baseline case, while those of the Dj/D = 1.045 cases are smaller than the baseline case. Furthermore, the correlative expressions of the local Nusselt number, stagnation points Nusselt number and average Nusselt number are obtained.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleFlow and Heat Transfer Characteristics of Single Jet Impinging on Dimpled Surface
    typeJournal Paper
    journal volume135
    journal issue5
    journal titleJournal of Heat Transfer
    identifier doi10.1115/1.4023360
    journal fristpage52201
    journal lastpage52201
    identifier eissn1528-8943
    treeJournal of Heat Transfer:;2013:;volume( 135 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian