Flow and Heat Transfer Characteristics of Single Jet Impinging on Dimpled SurfaceSource: Journal of Heat Transfer:;2013:;volume( 135 ):;issue: 005::page 52201DOI: 10.1115/1.4023360Publisher: The American Society of Mechanical Engineers (ASME)
Abstract: Based on combined particle image velocimetry (PIV) and numerical simulation, the flow and heat transfer characteristics of a single jet impinging on a dimpled surface for Dj/D = 0.318, 0.5, 1.045; خ´/D = 0.1, 0.2, 0.3; Rej = 5000, 10,000, 23,000, were investigated for the first time. The distance between jet nozzle and plate was fixed and equal to H/D = 2. The results show that the flow structures of the single jet impingement with dimpled target surface can be summarized into three typical conceptual flow structures. Particularly, the third flow structure in the form of a large toroidal vortex bound up with the dimple is the result of the centrifugal force of the flow deflection at the stagnation region and spherical centrifugal force of the deep dimple surface. The heat transfer area increases when the dimple relative depth increases. For the cases of Dj/D = 0.318 and 0.5, the area increasing dominate the heat transfer process, and the average Nusselt number increases with the increasing of dimple relative depth. For the cases with Dj/D = 1.045, the local Nusselt number reduction dominate the heat transfer process, the average Nusselt number decreases with the increasing of dimple relative depth. The average Nusselt number of the Dj/D = 0.318 and 0.5 cases is larger than the baseline case, while those of the Dj/D = 1.045 cases are smaller than the baseline case. Furthermore, the correlative expressions of the local Nusselt number, stagnation points Nusselt number and average Nusselt number are obtained.
|
Collections
Show full item record
contributor author | Xie, Yonghui | |
contributor author | Li, Ping | |
contributor author | Lan, Jibing | |
contributor author | Zhang, Di | |
date accessioned | 2017-05-09T00:59:44Z | |
date available | 2017-05-09T00:59:44Z | |
date issued | 2013 | |
identifier issn | 0022-1481 | |
identifier other | ht_135_5_052201.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/152114 | |
description abstract | Based on combined particle image velocimetry (PIV) and numerical simulation, the flow and heat transfer characteristics of a single jet impinging on a dimpled surface for Dj/D = 0.318, 0.5, 1.045; خ´/D = 0.1, 0.2, 0.3; Rej = 5000, 10,000, 23,000, were investigated for the first time. The distance between jet nozzle and plate was fixed and equal to H/D = 2. The results show that the flow structures of the single jet impingement with dimpled target surface can be summarized into three typical conceptual flow structures. Particularly, the third flow structure in the form of a large toroidal vortex bound up with the dimple is the result of the centrifugal force of the flow deflection at the stagnation region and spherical centrifugal force of the deep dimple surface. The heat transfer area increases when the dimple relative depth increases. For the cases of Dj/D = 0.318 and 0.5, the area increasing dominate the heat transfer process, and the average Nusselt number increases with the increasing of dimple relative depth. For the cases with Dj/D = 1.045, the local Nusselt number reduction dominate the heat transfer process, the average Nusselt number decreases with the increasing of dimple relative depth. The average Nusselt number of the Dj/D = 0.318 and 0.5 cases is larger than the baseline case, while those of the Dj/D = 1.045 cases are smaller than the baseline case. Furthermore, the correlative expressions of the local Nusselt number, stagnation points Nusselt number and average Nusselt number are obtained. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | Flow and Heat Transfer Characteristics of Single Jet Impinging on Dimpled Surface | |
type | Journal Paper | |
journal volume | 135 | |
journal issue | 5 | |
journal title | Journal of Heat Transfer | |
identifier doi | 10.1115/1.4023360 | |
journal fristpage | 52201 | |
journal lastpage | 52201 | |
identifier eissn | 1528-8943 | |
tree | Journal of Heat Transfer:;2013:;volume( 135 ):;issue: 005 | |
contenttype | Fulltext |