YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Fuel Cell Science and Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Fuel Cell Science and Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Comparison of Performance Losses Between Ultrasonic and Thermal Bonding of Membrane Electrode Assemblies in Proton Exchange Membrane Fuel Cells

    Source: Journal of Fuel Cell Science and Technology:;2013:;volume( 010 ):;issue: 004::page 41004
    Author:
    Beck, Joseph
    ,
    Walczyk, Daniel
    ,
    Buelte, Steve
    ,
    Hoffman, Casey
    DOI: 10.1115/1.4024567
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Ultrasonic bonding of lowtemperature PEM membrane electrode assembly (MEA) components together has been shown previously to cut both cycle time and energy input of that manufacturing step by over an order of magnitude as compared to the industry standard of thermal pressing. This paper compares performance between ultrasonically and thermally bonded lowtemperature MEAs and characterizes the performance losses from the new bonding process. A randomized, full factorial experiment was designed and conducted to examine performance of MEAs with 10 cm2 active area while varying three factors: bonding method (ultrasonically and thermally pressed using previously optimized bonding parameters), membrane condition (dry and conditioned Nafionآ® 115), and electrode catalyst loading (0.16 and 0.33 mg Pt/cm2). Ultrasonic MEAs performed as well as their thermal MEAs across all tested current densities with pure oxygen supplied to the cathode. However, thermal MEAs outperformed ultrasonic MEAs at current densities above 0.4 A/cm2 with air supplied to the cathode. Impedance spectroscopy, cyclic voltammetry, and flow sensitivity analyses were used to characterize the performance losses of the ultrasonic MEAs. The data suggest the presence of oxygen diffusion losses above 0.4 A/cm2 when air was supplied to the cathode. Ultrasonic MEAs were three times more sensitive to changes in air flow rate on the cathode than the thermally MEAs. Increasing the platinum catalyst loading from 0.16 to 0.33 mg Pt/cm2 resulted in a performance enhancement of approximately 20 mV and 65% greater electrochemical surface area. Understanding the effect of ultrasonic bonding on various performance losses will help optimize the MEA bonding process. Analysis of specific losses present for ultrasonic MEAs may also provide insight into the design of MEA components for ultrasonic bonding.
    • Download: (1.209Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Comparison of Performance Losses Between Ultrasonic and Thermal Bonding of Membrane Electrode Assemblies in Proton Exchange Membrane Fuel Cells

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/152003
    Collections
    • Journal of Fuel Cell Science and Technology

    Show full item record

    contributor authorBeck, Joseph
    contributor authorWalczyk, Daniel
    contributor authorBuelte, Steve
    contributor authorHoffman, Casey
    date accessioned2017-05-09T00:59:27Z
    date available2017-05-09T00:59:27Z
    date issued2013
    identifier issn2381-6872
    identifier otherfc_10_4_041004.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/152003
    description abstractUltrasonic bonding of lowtemperature PEM membrane electrode assembly (MEA) components together has been shown previously to cut both cycle time and energy input of that manufacturing step by over an order of magnitude as compared to the industry standard of thermal pressing. This paper compares performance between ultrasonically and thermally bonded lowtemperature MEAs and characterizes the performance losses from the new bonding process. A randomized, full factorial experiment was designed and conducted to examine performance of MEAs with 10 cm2 active area while varying three factors: bonding method (ultrasonically and thermally pressed using previously optimized bonding parameters), membrane condition (dry and conditioned Nafionآ® 115), and electrode catalyst loading (0.16 and 0.33 mg Pt/cm2). Ultrasonic MEAs performed as well as their thermal MEAs across all tested current densities with pure oxygen supplied to the cathode. However, thermal MEAs outperformed ultrasonic MEAs at current densities above 0.4 A/cm2 with air supplied to the cathode. Impedance spectroscopy, cyclic voltammetry, and flow sensitivity analyses were used to characterize the performance losses of the ultrasonic MEAs. The data suggest the presence of oxygen diffusion losses above 0.4 A/cm2 when air was supplied to the cathode. Ultrasonic MEAs were three times more sensitive to changes in air flow rate on the cathode than the thermally MEAs. Increasing the platinum catalyst loading from 0.16 to 0.33 mg Pt/cm2 resulted in a performance enhancement of approximately 20 mV and 65% greater electrochemical surface area. Understanding the effect of ultrasonic bonding on various performance losses will help optimize the MEA bonding process. Analysis of specific losses present for ultrasonic MEAs may also provide insight into the design of MEA components for ultrasonic bonding.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleComparison of Performance Losses Between Ultrasonic and Thermal Bonding of Membrane Electrode Assemblies in Proton Exchange Membrane Fuel Cells
    typeJournal Paper
    journal volume10
    journal issue4
    journal titleJournal of Fuel Cell Science and Technology
    identifier doi10.1115/1.4024567
    journal fristpage41004
    journal lastpage41004
    identifier eissn2381-6910
    treeJournal of Fuel Cell Science and Technology:;2013:;volume( 010 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian