Mechanical Evaluation of Hydroxyapatite Nanocomposites Using Finite Element ModelingSource: Journal of Engineering Materials and Technology:;2013:;volume( 135 ):;issue: 001::page 11007DOI: 10.1115/1.4023187Publisher: The American Society of Mechanical Engineers (ASME)
Abstract: Hydroxyapatite (HA) has been proposed as a candidate material for bone implants because of its similarity to the inorganic phase in bone. However, due to its lower mechanical properties compared to bone, it has not been used in load bearing bone implants. Inclusion of second phase reinforcements in HA such as carbon nanotubes (CNT) and graphene nanosheets is expected to significantly improve its mechanical properties. In this study, a computational framework that will improve the understanding of the mechanical behavior of graphene nanosheet and CNTreinforced HAnanocomposites is proposed. The variation of elastic modulus of HAnanocomposites is assessed based on the nanofiller type, volume fraction, alignment, area, thickness, and aspect ratio using the finite element modeling. The results of the simulations show that graphene nanosheets are more effective in improving the elastic modulus of nanocomposites than CNTs at similar volume fractions. HAnanocomposites reinforced by graphene nanosheets exhibit transversely isotropic material properties and provide the highest elastic modulus when aligned along a direction or randomly distributed in a plane, whereas CNTs provide the best reinforcement when aligned along an axis. Variation in graphene nanosheet area, thickness, aspect ratio, and carbon nanotube length have negligible effect on elastic modulus of the HAnanocomposite. In addition, comparison between the finite element simulations and theoretical calculations show that clustering of nanoinclusions reduces the effectiveness of the reinforcement they provide. The simulation results and the computational framework presented in this study are expected to help in determining the best design and manufacturing parameters that can be adapted for developing HAnanocomposite bone implant materials.
|
Collections
Show full item record
contributor author | Doll, Kristopher | |
contributor author | Ural, Ani | |
date accessioned | 2017-05-09T00:58:44Z | |
date available | 2017-05-09T00:58:44Z | |
date issued | 2013 | |
identifier issn | 0094-4289 | |
identifier other | mats_135_1_011007.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/151775 | |
description abstract | Hydroxyapatite (HA) has been proposed as a candidate material for bone implants because of its similarity to the inorganic phase in bone. However, due to its lower mechanical properties compared to bone, it has not been used in load bearing bone implants. Inclusion of second phase reinforcements in HA such as carbon nanotubes (CNT) and graphene nanosheets is expected to significantly improve its mechanical properties. In this study, a computational framework that will improve the understanding of the mechanical behavior of graphene nanosheet and CNTreinforced HAnanocomposites is proposed. The variation of elastic modulus of HAnanocomposites is assessed based on the nanofiller type, volume fraction, alignment, area, thickness, and aspect ratio using the finite element modeling. The results of the simulations show that graphene nanosheets are more effective in improving the elastic modulus of nanocomposites than CNTs at similar volume fractions. HAnanocomposites reinforced by graphene nanosheets exhibit transversely isotropic material properties and provide the highest elastic modulus when aligned along a direction or randomly distributed in a plane, whereas CNTs provide the best reinforcement when aligned along an axis. Variation in graphene nanosheet area, thickness, aspect ratio, and carbon nanotube length have negligible effect on elastic modulus of the HAnanocomposite. In addition, comparison between the finite element simulations and theoretical calculations show that clustering of nanoinclusions reduces the effectiveness of the reinforcement they provide. The simulation results and the computational framework presented in this study are expected to help in determining the best design and manufacturing parameters that can be adapted for developing HAnanocomposite bone implant materials. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | Mechanical Evaluation of Hydroxyapatite Nanocomposites Using Finite Element Modeling | |
type | Journal Paper | |
journal volume | 135 | |
journal issue | 1 | |
journal title | Journal of Engineering Materials and Technology | |
identifier doi | 10.1115/1.4023187 | |
journal fristpage | 11007 | |
journal lastpage | 11007 | |
identifier eissn | 1528-8889 | |
tree | Journal of Engineering Materials and Technology:;2013:;volume( 135 ):;issue: 001 | |
contenttype | Fulltext |