YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering Materials and Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering Materials and Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Nonlinear Finite Element Framework for Viscoelastic Beams Based on the High Order Reddy Beam Theory

    Source: Journal of Engineering Materials and Technology:;2013:;volume( 135 ):;issue: 001::page 11005
    Author:
    Payette, G. S.
    ,
    Reddy, J. N.
    DOI: 10.1115/1.4023185
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: A weak form Galerkin finite element model for the nonlinear quasistatic and fully transient analysis of initially straight viscoelastic beams is developed using the kinematic assumptions of the thirdorder Reddy beam theory. The formulation assumes linear viscoelastic material properties and is applicable to problems involving small strains and moderate rotations. The viscoelastic constitutive equations are efficiently discretized using the trapezoidal rule in conjunction with a twopoint recurrence formula. Locking is avoided through the use of standard loworder reduced integration elements as well through the employment of a family of elements constructed using highpolynomial order Lagrange and Hermite interpolation functions.
    • Download: (1.129Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Nonlinear Finite Element Framework for Viscoelastic Beams Based on the High Order Reddy Beam Theory

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/151773
    Collections
    • Journal of Engineering Materials and Technology

    Show full item record

    contributor authorPayette, G. S.
    contributor authorReddy, J. N.
    date accessioned2017-05-09T00:58:44Z
    date available2017-05-09T00:58:44Z
    date issued2013
    identifier issn0094-4289
    identifier othermats_135_1_011005.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/151773
    description abstractA weak form Galerkin finite element model for the nonlinear quasistatic and fully transient analysis of initially straight viscoelastic beams is developed using the kinematic assumptions of the thirdorder Reddy beam theory. The formulation assumes linear viscoelastic material properties and is applicable to problems involving small strains and moderate rotations. The viscoelastic constitutive equations are efficiently discretized using the trapezoidal rule in conjunction with a twopoint recurrence formula. Locking is avoided through the use of standard loworder reduced integration elements as well through the employment of a family of elements constructed using highpolynomial order Lagrange and Hermite interpolation functions.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleA Nonlinear Finite Element Framework for Viscoelastic Beams Based on the High Order Reddy Beam Theory
    typeJournal Paper
    journal volume135
    journal issue1
    journal titleJournal of Engineering Materials and Technology
    identifier doi10.1115/1.4023185
    journal fristpage11005
    journal lastpage11005
    identifier eissn1528-8889
    treeJournal of Engineering Materials and Technology:;2013:;volume( 135 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian