Show simple item record

contributor authorSud, Keshav
contributor authorCetinkunt, Sabri
contributor authorFiveland, Scott B.
date accessioned2017-05-09T00:58:24Z
date available2017-05-09T00:58:24Z
date issued2013
identifier issn1528-8919
identifier othergtp_135_8_081504.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/151659
description abstractThis paper is a part of the research happening at the University of Illinois at Chicago together with Caterpillar Inc. for the development and validation of a split cycle clean combustion engine (SCCCE) operating on diesel fuel. A twocylinder variant of the SCCCE is modeled using Caterpillar's onedimensional modeling software Dynasty, following the geometric and boundary specifications given by the University of Pisa in their paper by Musu et al. (2010, “Clean Diesel Combustion by Means of the HCPC Concept,â€‌ SAE Paper No. 2010011256). The results are compared to validate our modeling methodology. The split cycle clean combustion (SCCC) concept may significantly reduce gaseous and particulate emissions while maintaining high engine efficiency compared to the current state of the art diesel engine. Some manufacturers have been prototyping gasoline engines based on the SCCC concept, but there are no diesel fuel powered SCCC engine prototypes existing in the market. This study will be a significant contribution in the performance evaluation of SCCC diesel engines at high load and part load conditions. A onedimensional modeling technique was chosen for this study due to the need of a fast running model that could be improved using design of experiments (DOE) analysis. Computational fluid dynamics (CFD) modeling produces more accurate results but limits one's ability to model a large number of configurations due to its large computational overhead that slows down the overall simulation process, thus making CFD models not feasible for this DOE. In order to accurately model an SCCC engine, we first validated our modeling methodology by reproducing results of the CFD based model presented by University of Pisa in Musu et al. (2010, “Clean Diesel Combustion by Means of the HCPC Concept,â€‌ SAE Paper No. 2010011256). A satisfactory comparison of results confirmed our modeling approach and enabled us to integrate more complex models that will be discussed in future publications.
publisherThe American Society of Mechanical Engineers (ASME)
titleModeling and Validation of a Split Cycle Clean Combustion Diesel Engine Concept
typeJournal Paper
journal volume135
journal issue8
journal titleJournal of Engineering for Gas Turbines and Power
identifier doi10.1115/1.4024181
journal fristpage81504
journal lastpage81504
identifier eissn0742-4795
treeJournal of Engineering for Gas Turbines and Power:;2013:;volume( 135 ):;issue: 008
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record