Show simple item record

contributor authorFeist, J. P.
contributor authorSollazzo, P. Y.
contributor authorBerthier, S.
contributor authorCharnley, B.
contributor authorWells, J.
date accessioned2017-05-09T00:57:59Z
date available2017-05-09T00:57:59Z
date issued2013
identifier issn1528-8919
identifier othergtp_135_1_012101.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/151533
description abstractThermal barrier coatings are used to reduce the actual working temperature of the high pressure turbine blade metal surface and; hence permit the engine to operate at higher more efficient temperatures. Sensor coatings are an adaptation of existing thermal barrier coatings to enhance their functionality, such that they not only protect engine components from the high temperature gas, but can also measure the material temperature accurately and determine the health of the coating e.g., ageing, erosion and corrosion. The sensing capability is introduced by embedding optically active materials into the thermal barrier coatings and by illuminating these coatings with excitation light phosphorescence can be observed. The phosphorescence carries temperature and structural information about the coating. Accurate temperature measurements in the engine hot section would eliminate some of the conservative margins which currently need to be imposed to permit safe operation. A 50 K underestimation at high operating temperatures can lead to significant premature failure of the protective coating and loss of integrity. Knowledge of the exact temperature could enable the adaptation of the most efficient coating strategies using the minimum amount of air. The integration of an online temperature detection system would enable the full potential of thermal barrier coatings to be realized due to improved accuracy in temperature measurement and early warning of degradation. This, in turn, will increase fuel efficiency and reduce CO2 emissions. Application: This paper describes the implementation of a sensor coating system on a RollsRoyce jet engine. The system consists of three components: industrially manufactured robust coatings, advanced remote detection optics and improved control and readout software. The majority of coatings were based on yttria stabilized zirconia doped with Dy (dysprosium) and Eu (europium), although other coatings made of yttrium aluminum garnet were manufactured as well. Coatings were produced on a production line using atmospheric plasma spraying. Parallel tests at Didcot power station revealed survivability of specific coatings in excess of 4500 effective operating hours. It is deduced that the capability of these coatings is in the range of normal maintenance schedules of industrial gas turbines of 24,000 h or even longer. An advanced optical system was designed and manufactured permitting easy scanning of coated components and also the detection of phosphorescence on rotating turbine blades (13 k rotations per minute) at standoff distances of up to 400 mm. Successful temperature measurements were taken from the nozzle guide vanes (hot), the combustion chamber (noisy) and the rotating turbine blades (moving) and compared with thermocouple and pyrometer installations for validation purposes.
publisherThe American Society of Mechanical Engineers (ASME)
titleApplication of an Industrial Sensor Coating System on a Rolls Royce Jet Engine for Temperature Detection
typeJournal Paper
journal volume135
journal issue1
journal titleJournal of Engineering for Gas Turbines and Power
identifier doi10.1115/1.4007370
journal fristpage12101
journal lastpage12101
identifier eissn0742-4795
treeJournal of Engineering for Gas Turbines and Power:;2013:;volume( 135 ):;issue: 001
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record