YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Cerebrospinal Fluid Pressures Resulting From Experimental Traumatic Spinal Cord Injuries in a Pig Model

    Source: Journal of Biomechanical Engineering:;2013:;volume( 135 ):;issue: 010::page 101005
    Author:
    Jones, Claire F.
    ,
    Lee, Jae H. T.
    ,
    Burstyn, Uri
    ,
    Okon, Elena B.
    ,
    Kwon, Brian K.
    ,
    Cripton, Peter A.
    DOI: 10.1115/1.4025100
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Despite considerable effort over the last four decades, research has failed to translate into consistently effective treatment options for spinal cord injury (SCI). This is partly attributed to differences between the injury response of humans and rodent models. Some of this difference could be because the cerebrospinal fluid (CSF) layer of the human spine is relatively large, while that of the rodents is extremely thin. We sought to characterize the fluid impulse induced in the CSF by experimental SCIs of moderate and high humanlike severity, and to compare this with previous studies in which fluid impulse has been associated with neural tissue injury. We used a new in vivo pig model (n = 6 per injury group, mean age 124.5 days, 20.9 kg) incorporating four miniature pressure transducers that were implanted in pairs in the subarachnoid space, cranial, and caudal to the injury at 30 mm and 100 mm. Tissue sparing was assessed with Eriochrome Cyanine and Neutral Red staining. The median peak pressures near the injury were 522.5 and 868.8 mmHg (range 96.7–1430.0) and far from the injury were 7.6 and 36.3 mmHg (range 3.8–83.7), for the moderate and high injury severities, respectively. Pressure impulse (mmHg.ms), apparent wave speed, and apparent attenuation factor were also evaluated. The data indicates that the fluid pressure wave may be sufficient to affect the severity and extent of primary tissue damage close to the injury site. However, the CSF pressure was close to normal physiologic values at 100 mm from the injury. The high injury severity animals had less tissue sparing than the moderate injury severity animals; this difference was statistically significant only within 1.6 mm of the epicenter. These results indicate that future research seeking to elucidate the mechanical origins of primary tissue damage in SCI should consider the effects of CSF. This pig model provides advantages for basic and preclinical SCI research due to its similarities to human scale, including the existence of a humanlike CSF fluid layer.
    • Download: (942.4Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Cerebrospinal Fluid Pressures Resulting From Experimental Traumatic Spinal Cord Injuries in a Pig Model

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/151099
    Collections
    • Journal of Biomechanical Engineering

    Show full item record

    contributor authorJones, Claire F.
    contributor authorLee, Jae H. T.
    contributor authorBurstyn, Uri
    contributor authorOkon, Elena B.
    contributor authorKwon, Brian K.
    contributor authorCripton, Peter A.
    date accessioned2017-05-09T00:56:48Z
    date available2017-05-09T00:56:48Z
    date issued2013
    identifier issn0148-0731
    identifier otherbio_135_10_101005.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/151099
    description abstractDespite considerable effort over the last four decades, research has failed to translate into consistently effective treatment options for spinal cord injury (SCI). This is partly attributed to differences between the injury response of humans and rodent models. Some of this difference could be because the cerebrospinal fluid (CSF) layer of the human spine is relatively large, while that of the rodents is extremely thin. We sought to characterize the fluid impulse induced in the CSF by experimental SCIs of moderate and high humanlike severity, and to compare this with previous studies in which fluid impulse has been associated with neural tissue injury. We used a new in vivo pig model (n = 6 per injury group, mean age 124.5 days, 20.9 kg) incorporating four miniature pressure transducers that were implanted in pairs in the subarachnoid space, cranial, and caudal to the injury at 30 mm and 100 mm. Tissue sparing was assessed with Eriochrome Cyanine and Neutral Red staining. The median peak pressures near the injury were 522.5 and 868.8 mmHg (range 96.7–1430.0) and far from the injury were 7.6 and 36.3 mmHg (range 3.8–83.7), for the moderate and high injury severities, respectively. Pressure impulse (mmHg.ms), apparent wave speed, and apparent attenuation factor were also evaluated. The data indicates that the fluid pressure wave may be sufficient to affect the severity and extent of primary tissue damage close to the injury site. However, the CSF pressure was close to normal physiologic values at 100 mm from the injury. The high injury severity animals had less tissue sparing than the moderate injury severity animals; this difference was statistically significant only within 1.6 mm of the epicenter. These results indicate that future research seeking to elucidate the mechanical origins of primary tissue damage in SCI should consider the effects of CSF. This pig model provides advantages for basic and preclinical SCI research due to its similarities to human scale, including the existence of a humanlike CSF fluid layer.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleCerebrospinal Fluid Pressures Resulting From Experimental Traumatic Spinal Cord Injuries in a Pig Model
    typeJournal Paper
    journal volume135
    journal issue10
    journal titleJournal of Biomechanical Engineering
    identifier doi10.1115/1.4025100
    journal fristpage101005
    journal lastpage101005
    identifier eissn1528-8951
    treeJournal of Biomechanical Engineering:;2013:;volume( 135 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian