YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    On the Modeling of an Intervertebral Disc Using a Novel Large Deformation Multi Shell Approach

    Source: Journal of Biomechanical Engineering:;2013:;volume( 135 ):;issue: 005::page 51003
    Author:
    Demers, Sأ©bastien
    ,
    Bouzid, Abdel
    ,
    Nadeau, Sylvie
    DOI: 10.1115/1.4024133
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The objective of this study is to develop an analytical model to predict the stresses and displacements in the lamellae of the intervertebral disc subjected to a compressive force. This is achieved by developing a model based on membrane theory combined to large deformation multishell structural behavior. Equations for longitudinal and circumferential stresses are formulated for each lamella of the anulus fibrosus. Multilamellae interaction is a statically indeterminate problem, which requires equations of compatibility of the displacements of adjacent lamellae to be resolved. The large deformation inherent to soft tissue is considered and the solution is obtained using an iterative process. Elastic interactions with a large deformation is a novelty in analytical modeling of soft tissues. This provides model realism and offers the possibility for new and indepth investigations. Results are given for longitudinal and circumferential stresses and displacements as well as contact pressures for every lamella of the anulus fibrosus. The analytical results are compared to those of two finite element models. The results suggest that the most highly stressed zone is located on the innermost lamella. Stresses decrease through disc thickness and are at a maximum at the innermost lamella. Circumferential stress is predominant and the difference is less than 5% at any point of the anulus fibrosus when the analytical model is compared to the finite element model using coupled degrees of freedom at the lamellae interface. When compared to the finite element model using contact elements, the difference is below 11%. Contact pressures from the inside to the outside of the anulus fibrosus are shown to decrease nonlinearly. The model presented in this study has demonstrated that it is possible to analytically simulate the complex mechanical behavior of a multishell intervertebral disc subjected to compression, provided some simplifications. Further improvements are suggested to increase model realism and recommendations are given for future experimentation necessary to support both the analytical and numerical models.
    • Download: (1.542Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      On the Modeling of an Intervertebral Disc Using a Novel Large Deformation Multi Shell Approach

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/151029
    Collections
    • Journal of Biomechanical Engineering

    Show full item record

    contributor authorDemers, Sأ©bastien
    contributor authorBouzid, Abdel
    contributor authorNadeau, Sylvie
    date accessioned2017-05-09T00:56:37Z
    date available2017-05-09T00:56:37Z
    date issued2013
    identifier issn0148-0731
    identifier otherbio_135_5_051003.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/151029
    description abstractThe objective of this study is to develop an analytical model to predict the stresses and displacements in the lamellae of the intervertebral disc subjected to a compressive force. This is achieved by developing a model based on membrane theory combined to large deformation multishell structural behavior. Equations for longitudinal and circumferential stresses are formulated for each lamella of the anulus fibrosus. Multilamellae interaction is a statically indeterminate problem, which requires equations of compatibility of the displacements of adjacent lamellae to be resolved. The large deformation inherent to soft tissue is considered and the solution is obtained using an iterative process. Elastic interactions with a large deformation is a novelty in analytical modeling of soft tissues. This provides model realism and offers the possibility for new and indepth investigations. Results are given for longitudinal and circumferential stresses and displacements as well as contact pressures for every lamella of the anulus fibrosus. The analytical results are compared to those of two finite element models. The results suggest that the most highly stressed zone is located on the innermost lamella. Stresses decrease through disc thickness and are at a maximum at the innermost lamella. Circumferential stress is predominant and the difference is less than 5% at any point of the anulus fibrosus when the analytical model is compared to the finite element model using coupled degrees of freedom at the lamellae interface. When compared to the finite element model using contact elements, the difference is below 11%. Contact pressures from the inside to the outside of the anulus fibrosus are shown to decrease nonlinearly. The model presented in this study has demonstrated that it is possible to analytically simulate the complex mechanical behavior of a multishell intervertebral disc subjected to compression, provided some simplifications. Further improvements are suggested to increase model realism and recommendations are given for future experimentation necessary to support both the analytical and numerical models.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleOn the Modeling of an Intervertebral Disc Using a Novel Large Deformation Multi Shell Approach
    typeJournal Paper
    journal volume135
    journal issue5
    journal titleJournal of Biomechanical Engineering
    identifier doi10.1115/1.4024133
    journal fristpage51003
    journal lastpage51003
    identifier eissn1528-8951
    treeJournal of Biomechanical Engineering:;2013:;volume( 135 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian