YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Vibration and Acoustics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Vibration and Acoustics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Stochastic Analysis of the Eigenvalue Problem for Mechanical Systems Using Polynomial Chaos Expansion— Application to a Finite Element Rotor

    Source: Journal of Vibration and Acoustics:;2012:;volume( 134 ):;issue: 005::page 51009
    Author:
    E. Sarrouy
    ,
    O. Dessombz
    ,
    J.-J. Sinou
    DOI: 10.1115/1.4005842
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This paper proposes to use a polynomial chaos expansion approach to compute stochastic complex eigenvalues and eigenvectors of structures including damping or gyroscopic effects. Its application to a finite element rotor model is compared to Monte Carlo simulations. This lets us validate the method and emphasize its advantages. Three different uncertain configurations are studied. For each, a stochastic Campbell diagram is proposed and interpreted and critical speeds dispersion is evaluated. Furthermore, an adaptation of the Modal Accordance Criterion (MAC) is proposed in order to monitor the eigenvectors dispersion.
    • Download: (2.230Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Stochastic Analysis of the Eigenvalue Problem for Mechanical Systems Using Polynomial Chaos Expansion— Application to a Finite Element Rotor

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/150609
    Collections
    • Journal of Vibration and Acoustics

    Show full item record

    contributor authorE. Sarrouy
    contributor authorO. Dessombz
    contributor authorJ.-J. Sinou
    date accessioned2017-05-09T00:55:31Z
    date available2017-05-09T00:55:31Z
    date copyrightOctober, 2012
    date issued2012
    identifier issn1048-9002
    identifier otherJVACEK-926081#051009_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/150609
    description abstractThis paper proposes to use a polynomial chaos expansion approach to compute stochastic complex eigenvalues and eigenvectors of structures including damping or gyroscopic effects. Its application to a finite element rotor model is compared to Monte Carlo simulations. This lets us validate the method and emphasize its advantages. Three different uncertain configurations are studied. For each, a stochastic Campbell diagram is proposed and interpreted and critical speeds dispersion is evaluated. Furthermore, an adaptation of the Modal Accordance Criterion (MAC) is proposed in order to monitor the eigenvectors dispersion.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleStochastic Analysis of the Eigenvalue Problem for Mechanical Systems Using Polynomial Chaos Expansion— Application to a Finite Element Rotor
    typeJournal Paper
    journal volume134
    journal issue5
    journal titleJournal of Vibration and Acoustics
    identifier doi10.1115/1.4005842
    journal fristpage51009
    identifier eissn1528-8927
    treeJournal of Vibration and Acoustics:;2012:;volume( 134 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian