YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Influence of Coolant Density on Turbine Blade Film-Cooling Using Pressure Sensitive Paint Technique

    Source: Journal of Turbomachinery:;2012:;volume( 134 ):;issue: 003::page 31006
    Author:
    Diganta P. Narzary
    ,
    Kuo-Chun Liu
    ,
    Akhilesh P. Rallabandi
    ,
    Je-Chin Han
    DOI: 10.1115/1.4003025
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Adiabatic film-cooling effectiveness is examined on a high-pressure turbine blade by varying three critical engine parameters, viz., coolant blowing ratio, coolant-to-mainstream density ratio, and freestream turbulence intensity. Three average coolant blowing ratios (BR=1.2, 1.7, and 2.2 on the pressure side and BR=1.1, 1.4, and 1.8 on the suction side), three average coolant density ratios (DR=1.0, 1.5, and 2.5), and two average freestream turbulence intensities (Tu=4.2% and 10.5%) are considered. Conduction-free pressure sensitive paint (PSP) technique is adopted to measure film-cooling effectiveness. Three foreign gases—N2 for low density, CO2 for medium density, and a mixture of SF6 and argon for high density are selected to study the effect of coolant density. The test blade features two rows of cylindrical film-cooling holes on the suction side (45 deg compound), 4 rows on the pressure side (45 deg compound) and 3 around the leading edge (30 deg radial). The inlet and the exit Mach numbers are 0.24 and 0.44, respectively. The Reynolds number of the mainstream flow is 7.5×105 based on the exit velocity and blade chord length. Results suggest that the PSP is a powerful technique capable of producing clear and detailed film-effectiveness contours with diverse foreign gases. Large improvement on the pressure side and moderate improvement on the suction side effectiveness is witnessed when blowing ratio is raised from 1.2 to 1.7 and 1.1 to 1.4, respectively. No major improvement is seen thereafter with the downstream half of the suction side showing drop in effectiveness. The effect of increasing coolant density is to increase effectiveness everywhere on the pressure surface and suction surface except for the small region on the suction side, xss/Cx<0.2. Higher freestream turbulence causes effectiveness to drop everywhere except in the region downstream of the suction side where significant improvement in effectiveness is seen.
    keyword(s): Density , Pressure , Cooling , Suction , Coolants , Blades , Turbulence AND Turbine blades ,
    • Download: (2.056Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Influence of Coolant Density on Turbine Blade Film-Cooling Using Pressure Sensitive Paint Technique

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/150513
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorDiganta P. Narzary
    contributor authorKuo-Chun Liu
    contributor authorAkhilesh P. Rallabandi
    contributor authorJe-Chin Han
    date accessioned2017-05-09T00:55:17Z
    date available2017-05-09T00:55:17Z
    date copyrightMay, 2012
    date issued2012
    identifier issn0889-504X
    identifier otherJOTUEI-28785#031006_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/150513
    description abstractAdiabatic film-cooling effectiveness is examined on a high-pressure turbine blade by varying three critical engine parameters, viz., coolant blowing ratio, coolant-to-mainstream density ratio, and freestream turbulence intensity. Three average coolant blowing ratios (BR=1.2, 1.7, and 2.2 on the pressure side and BR=1.1, 1.4, and 1.8 on the suction side), three average coolant density ratios (DR=1.0, 1.5, and 2.5), and two average freestream turbulence intensities (Tu=4.2% and 10.5%) are considered. Conduction-free pressure sensitive paint (PSP) technique is adopted to measure film-cooling effectiveness. Three foreign gases—N2 for low density, CO2 for medium density, and a mixture of SF6 and argon for high density are selected to study the effect of coolant density. The test blade features two rows of cylindrical film-cooling holes on the suction side (45 deg compound), 4 rows on the pressure side (45 deg compound) and 3 around the leading edge (30 deg radial). The inlet and the exit Mach numbers are 0.24 and 0.44, respectively. The Reynolds number of the mainstream flow is 7.5×105 based on the exit velocity and blade chord length. Results suggest that the PSP is a powerful technique capable of producing clear and detailed film-effectiveness contours with diverse foreign gases. Large improvement on the pressure side and moderate improvement on the suction side effectiveness is witnessed when blowing ratio is raised from 1.2 to 1.7 and 1.1 to 1.4, respectively. No major improvement is seen thereafter with the downstream half of the suction side showing drop in effectiveness. The effect of increasing coolant density is to increase effectiveness everywhere on the pressure surface and suction surface except for the small region on the suction side, xss/Cx<0.2. Higher freestream turbulence causes effectiveness to drop everywhere except in the region downstream of the suction side where significant improvement in effectiveness is seen.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleInfluence of Coolant Density on Turbine Blade Film-Cooling Using Pressure Sensitive Paint Technique
    typeJournal Paper
    journal volume134
    journal issue3
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.4003025
    journal fristpage31006
    identifier eissn1528-8900
    keywordsDensity
    keywordsPressure
    keywordsCooling
    keywordsSuction
    keywordsCoolants
    keywordsBlades
    keywordsTurbulence AND Turbine blades
    treeJournal of Turbomachinery:;2012:;volume( 134 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian