A 3D Compressible Flow Model for Weak Rotating Waves in Vaneless Diffusers—Part II: Detailed ResultsSource: Journal of Turbomachinery:;2012:;volume( 134 ):;issue: 004::page 41011DOI: 10.1115/1.4003654Publisher: The American Society of Mechanical Engineers (ASME)
Abstract: A 3D compressible flow model was presented in Part I of the paper to study the occurrence of weak rotating waves in vaneless diffusers of centrifugal compressors. In this paper, detailed results on the influences of flow and diffuser geometry parameters, including inlet Mach number, inlet distortion, wave number, diffuser outlet-to-inlet radius ratio, diffuser width to inlet radius ratio, and impeller backswept angle, on the rotating waves are presented. It was found that inlet spanwise distortion of radial velocity has little effects on diffuser stability, but rotating wave speed increases with the distortion. The speed also increases with inlet Mach number, so does diffuser instability. Impeller backswept improves diffuser stability and this effect increases with diffuser radius ratio. Multiple resonances were found when impeller backswept is coupled to inlet distortion of radial velocity. These resonances may have similar stabilities but with different wave speeds, suggesting that two rotating waves with different rotating speeds may occur at the same time. Diffuser width was found to have little effects on stability and on wave speed if the same maximum and same minimum values of inlet distortion of radial velocity are kept, but have some effects if the values are not kept. A comparison was also made between the present model predictions and results in open literatures, and good agreement with the experimental results than previous 2D models was achieved.
keyword(s): Mach number , Impellers , Waves , Diffusers , Compressible flow , Vaneless diffusers AND Flow (Dynamics) ,
|
Collections
Show full item record
contributor author | Feng Sheng | |
contributor author | Hua Chen | |
contributor author | Xiao-cheng Zhu | |
contributor author | Zhao-hui Du | |
date accessioned | 2017-05-09T00:55:12Z | |
date available | 2017-05-09T00:55:12Z | |
date copyright | July, 2012 | |
date issued | 2012 | |
identifier issn | 0889-504X | |
identifier other | JOTUEI-926077#041011_1.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/150493 | |
description abstract | A 3D compressible flow model was presented in Part I of the paper to study the occurrence of weak rotating waves in vaneless diffusers of centrifugal compressors. In this paper, detailed results on the influences of flow and diffuser geometry parameters, including inlet Mach number, inlet distortion, wave number, diffuser outlet-to-inlet radius ratio, diffuser width to inlet radius ratio, and impeller backswept angle, on the rotating waves are presented. It was found that inlet spanwise distortion of radial velocity has little effects on diffuser stability, but rotating wave speed increases with the distortion. The speed also increases with inlet Mach number, so does diffuser instability. Impeller backswept improves diffuser stability and this effect increases with diffuser radius ratio. Multiple resonances were found when impeller backswept is coupled to inlet distortion of radial velocity. These resonances may have similar stabilities but with different wave speeds, suggesting that two rotating waves with different rotating speeds may occur at the same time. Diffuser width was found to have little effects on stability and on wave speed if the same maximum and same minimum values of inlet distortion of radial velocity are kept, but have some effects if the values are not kept. A comparison was also made between the present model predictions and results in open literatures, and good agreement with the experimental results than previous 2D models was achieved. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | A 3D Compressible Flow Model for Weak Rotating Waves in Vaneless Diffusers—Part II: Detailed Results | |
type | Journal Paper | |
journal volume | 134 | |
journal issue | 4 | |
journal title | Journal of Turbomachinery | |
identifier doi | 10.1115/1.4003654 | |
journal fristpage | 41011 | |
identifier eissn | 1528-8900 | |
keywords | Mach number | |
keywords | Impellers | |
keywords | Waves | |
keywords | Diffusers | |
keywords | Compressible flow | |
keywords | Vaneless diffusers AND Flow (Dynamics) | |
tree | Journal of Turbomachinery:;2012:;volume( 134 ):;issue: 004 | |
contenttype | Fulltext |