YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    An Investigation of Treating Adiabatic Wall Temperature as the Driving Temperature in Film Cooling Studies

    Source: Journal of Turbomachinery:;2012:;volume( 134 ):;issue: 006::page 61032
    Author:
    Lei Zhao
    ,
    Ting Wang
    DOI: 10.1115/1.4006311
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In film cooling heat transfer analysis, one of the core concepts is to deem film cooled adiabatic wall temperature (Taw ) as the driving potential for the actual heat flux over the film-cooled surface. Theoretically, the concept of treating Taw as the driving temperature potential is drawn from compressible flow theory when viscous dissipation becomes the heat source near the wall and creates higher wall temperature than in the flowing gas. But in conditions where viscous dissipation is negligible, which is common in experiments under laboratory conditions, the heat source is not from near the wall but from the main hot gas stream; therefore, the concept of treating the adiabatic wall temperature as the driving potential is subjected to examination. To help investigate the role that Taw plays, a series of computational simulations are conducted under typical film cooling conditions over a conjugate wall with internal flow cooling. The result and analysis support the validity of this concept to be used in the film cooling by showing that Taw is indeed the driving temperature potential on the hypothetical zero wall thickness condition, i.e., Taw is always higher than Tw with underneath (or internal) cooling and the adiabatic film heat transfer coefficient (haf ) is always positive. However, in the conjugate wall cases, Taw is not always higher than wall temperature (Tw ), and therefore, Taw does not always play the role as the driving potential. Reversed heat transfer through the airfoil wall from downstream to upstream is possible, and this reversed heat flow will make Tw > Taw in the near injection hole region. Yet evidence supports that Taw can be used to correctly predict the heat flux direction and always result in a positive adiabatic heat transfer coefficient (haf ). The results further suggest that two different test walls are recommended for conducting film cooling experiments: a low thermal conductivity material should be used for obtaining accurate Taw and a relative high thermal conductivity material be used for conjugate cooling experiment. Insulating a high-conductivity wall will result in Taw distribution that will not provide correct heat flux or haf values near the injection hole.
    keyword(s): Temperature , Cooling , Wall temperature , Heat flux , Flow (Dynamics) , Heat , Airfoils , Heat transfer , Shells AND Wall thickness ,
    • Download: (1.849Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      An Investigation of Treating Adiabatic Wall Temperature as the Driving Temperature in Film Cooling Studies

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/150425
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorLei Zhao
    contributor authorTing Wang
    date accessioned2017-05-09T00:54:57Z
    date available2017-05-09T00:54:57Z
    date copyrightNovember, 2012
    date issued2012
    identifier issn0889-504X
    identifier otherJOTUEI-926080#061032_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/150425
    description abstractIn film cooling heat transfer analysis, one of the core concepts is to deem film cooled adiabatic wall temperature (Taw ) as the driving potential for the actual heat flux over the film-cooled surface. Theoretically, the concept of treating Taw as the driving temperature potential is drawn from compressible flow theory when viscous dissipation becomes the heat source near the wall and creates higher wall temperature than in the flowing gas. But in conditions where viscous dissipation is negligible, which is common in experiments under laboratory conditions, the heat source is not from near the wall but from the main hot gas stream; therefore, the concept of treating the adiabatic wall temperature as the driving potential is subjected to examination. To help investigate the role that Taw plays, a series of computational simulations are conducted under typical film cooling conditions over a conjugate wall with internal flow cooling. The result and analysis support the validity of this concept to be used in the film cooling by showing that Taw is indeed the driving temperature potential on the hypothetical zero wall thickness condition, i.e., Taw is always higher than Tw with underneath (or internal) cooling and the adiabatic film heat transfer coefficient (haf ) is always positive. However, in the conjugate wall cases, Taw is not always higher than wall temperature (Tw ), and therefore, Taw does not always play the role as the driving potential. Reversed heat transfer through the airfoil wall from downstream to upstream is possible, and this reversed heat flow will make Tw > Taw in the near injection hole region. Yet evidence supports that Taw can be used to correctly predict the heat flux direction and always result in a positive adiabatic heat transfer coefficient (haf ). The results further suggest that two different test walls are recommended for conducting film cooling experiments: a low thermal conductivity material should be used for obtaining accurate Taw and a relative high thermal conductivity material be used for conjugate cooling experiment. Insulating a high-conductivity wall will result in Taw distribution that will not provide correct heat flux or haf values near the injection hole.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleAn Investigation of Treating Adiabatic Wall Temperature as the Driving Temperature in Film Cooling Studies
    typeJournal Paper
    journal volume134
    journal issue6
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.4006311
    journal fristpage61032
    identifier eissn1528-8900
    keywordsTemperature
    keywordsCooling
    keywordsWall temperature
    keywordsHeat flux
    keywordsFlow (Dynamics)
    keywordsHeat
    keywordsAirfoils
    keywordsHeat transfer
    keywordsShells AND Wall thickness
    treeJournal of Turbomachinery:;2012:;volume( 134 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian