YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Heat Transfer and Friction Augmentation in High Aspect Ratio, Ribbed Channels With Dissimilar Inlet Conditions

    Source: Journal of Turbomachinery:;2012:;volume( 134 ):;issue: 006::page 61013
    Author:
    Carson D. Slabaugh
    ,
    Bobby A. Warren
    ,
    Lucky V. Tran
    ,
    J. S. Kapat
    DOI: 10.1115/1.4006283
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This work is an investigation of the heat transfer and pressure-loss characteristics in a rectangular channel with ribs oriented perpendicular to the flow. The novelty of this study lies in the immoderate parameters of the channel geometry and transport enhancing features. Specifically, the aspect ratio (AR) of the rectangular channel is considerably high, varying from 15 to 30 for the cases reported. Also varied is the rib-pitch to rib-height (p/e), studied at two values, 18.8 and 37.3. Rib-pitch to rib-width (p/w) is held to a value of two for all configurations. Channel Reynolds number is varied between approximately 3000 and 27,000 for four different tests of each channel configuration. Each channel configuration is studied with two different inlet conditions. The baseline condition consists of a long entrance section leading to the entrance of the channel to provide a hydrodynamically developed flow at the inlet. The second inlet condition studied consists of a cross-flow supply in a direction perpendicular to the channel axis, oriented in the direction of the channel width (the longer channel dimension). In the second case, the flow rate of the cross-flow supply is varied to understand the effects of a varying momentum flux ratio on the heat transfer and pressure-loss characteristics of the channel. Numerical simulations revealed a strong dependence of the local flow physics on the momentum flux ratio. The turning effect of the flow entering the channel from the cross-flow channel is strongly affected by the pressure gradient across the channel. Strong pressure fields have the ability to propagate farther into the cross-flow channel to “pull” the flow, partially redirecting it before entering the channel and reducing the impingement effect of the flow on the back wall of the channel. Experimental results show a maximum value of Nusselt number augmentation to be found in the 30:1 AR channel with the aggressive augmenter (p/e = 37.3) and a high momentum flux ratio: Nu/Nuo = 3.15. This design also yielded the friction with f/f0 = 2.6.
    keyword(s): Flow (Dynamics) , Channels (Hydraulic engineering) , Cross-flow , Heat transfer AND Friction ,
    • Download: (4.099Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Heat Transfer and Friction Augmentation in High Aspect Ratio, Ribbed Channels With Dissimilar Inlet Conditions

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/150405
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorCarson D. Slabaugh
    contributor authorBobby A. Warren
    contributor authorLucky V. Tran
    contributor authorJ. S. Kapat
    date accessioned2017-05-09T00:54:53Z
    date available2017-05-09T00:54:53Z
    date copyrightNovember, 2012
    date issued2012
    identifier issn0889-504X
    identifier otherJOTUEI-926080#061013_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/150405
    description abstractThis work is an investigation of the heat transfer and pressure-loss characteristics in a rectangular channel with ribs oriented perpendicular to the flow. The novelty of this study lies in the immoderate parameters of the channel geometry and transport enhancing features. Specifically, the aspect ratio (AR) of the rectangular channel is considerably high, varying from 15 to 30 for the cases reported. Also varied is the rib-pitch to rib-height (p/e), studied at two values, 18.8 and 37.3. Rib-pitch to rib-width (p/w) is held to a value of two for all configurations. Channel Reynolds number is varied between approximately 3000 and 27,000 for four different tests of each channel configuration. Each channel configuration is studied with two different inlet conditions. The baseline condition consists of a long entrance section leading to the entrance of the channel to provide a hydrodynamically developed flow at the inlet. The second inlet condition studied consists of a cross-flow supply in a direction perpendicular to the channel axis, oriented in the direction of the channel width (the longer channel dimension). In the second case, the flow rate of the cross-flow supply is varied to understand the effects of a varying momentum flux ratio on the heat transfer and pressure-loss characteristics of the channel. Numerical simulations revealed a strong dependence of the local flow physics on the momentum flux ratio. The turning effect of the flow entering the channel from the cross-flow channel is strongly affected by the pressure gradient across the channel. Strong pressure fields have the ability to propagate farther into the cross-flow channel to “pull” the flow, partially redirecting it before entering the channel and reducing the impingement effect of the flow on the back wall of the channel. Experimental results show a maximum value of Nusselt number augmentation to be found in the 30:1 AR channel with the aggressive augmenter (p/e = 37.3) and a high momentum flux ratio: Nu/Nuo = 3.15. This design also yielded the friction with f/f0 = 2.6.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleHeat Transfer and Friction Augmentation in High Aspect Ratio, Ribbed Channels With Dissimilar Inlet Conditions
    typeJournal Paper
    journal volume134
    journal issue6
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.4006283
    journal fristpage61013
    identifier eissn1528-8900
    keywordsFlow (Dynamics)
    keywordsChannels (Hydraulic engineering)
    keywordsCross-flow
    keywordsHeat transfer AND Friction
    treeJournal of Turbomachinery:;2012:;volume( 134 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian