YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Mechanical Design
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Mechanical Design
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Design and Analysis of a Foldable/Unfoldable Corrugated Architectural Curved Envelop

    Source: Journal of Mechanical Design:;2012:;volume( 134 ):;issue: 003::page 31003
    Author:
    Francesco Gioia
    ,
    David Dureisseix
    ,
    René Motro
    ,
    Bernard Maurin
    DOI: 10.1115/1.4005601
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Origami and paperfolding techniques may inspire the design of structures that have the ability to be folded and unfolded: their geometry can be changed from an extended, servicing state to a compact one, and back-forth. In traditional origami, folds are introduced in a sheet of paper (a developable surface) for transforming its shape, with artistic, or decorative intent; in recent times the ideas behind origami techniques were transferred in various design disciplines to build developable foldable/unfoldable structures, mostly in aerospace industry (Miura, 1985, “Method of Packaging and Deployment of Large Membranes in Space,” Inst. Space Astronaut. Sci. Rep., 618 , pp. 1–9; Ikema et al. , 2009, “Deformation Analysis of a Joint Structure Designed for Space Suit With the Aid of an Origami Technology,” 27th International Symposium on Space Technology and Science (ISTS)). The geometrical arrangement of folds allows a folding mechanism of great efficiency and is often derived from the buckling patterns of simple geometries, like a plane or a cylinder (e.g., Miura-ori and Yoshimura folding pattern) (Wu et al. , 2007, “Optimization of Crush Characteristics of the Cylindrical Origami Structure,” Int. J. Veh. Des., 43 , pp. 66–81; Hunt and Ario, 2005, “Twist Buckling and the Foldable Cylinder: An Exercise in Origami,” Int. J. Non-Linear Mech., 40 (6), pp. 833–843). Here, we interest ourselves to the conception of foldable/unfoldable structures for civil engineering and architecture. In those disciplines, the need for folding efficiency comes along with the need for structural efficiency (stiffness); for this purpose, we will explore nondevelopable foldable/unfoldable structures: those structures exhibit potential stiffness because, when unfolded, they cannot be flattened to a plane (nondevelopability). In this paper, we propose a classification for foldable/unfoldable surfaces that comprehend non fully developable (and also non fully foldable) surfaces and a method for the description of folding motion. Then, we propose innovative geometrical configurations for those structures by generalizing the Miura-ori folding pattern to nondevelopable surfaces that, once unfolded, exhibit curvature.
    keyword(s): Design , Stiffness AND Structures ,
    • Download: (2.728Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Design and Analysis of a Foldable/Unfoldable Corrugated Architectural Curved Envelop

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/149808
    Collections
    • Journal of Mechanical Design

    Show full item record

    contributor authorFrancesco Gioia
    contributor authorDavid Dureisseix
    contributor authorRené Motro
    contributor authorBernard Maurin
    date accessioned2017-05-09T00:53:15Z
    date available2017-05-09T00:53:15Z
    date copyrightMarch, 2012
    date issued2012
    identifier issn1050-0472
    identifier otherJMDEDB-27960#031003_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/149808
    description abstractOrigami and paperfolding techniques may inspire the design of structures that have the ability to be folded and unfolded: their geometry can be changed from an extended, servicing state to a compact one, and back-forth. In traditional origami, folds are introduced in a sheet of paper (a developable surface) for transforming its shape, with artistic, or decorative intent; in recent times the ideas behind origami techniques were transferred in various design disciplines to build developable foldable/unfoldable structures, mostly in aerospace industry (Miura, 1985, “Method of Packaging and Deployment of Large Membranes in Space,” Inst. Space Astronaut. Sci. Rep., 618 , pp. 1–9; Ikema et al. , 2009, “Deformation Analysis of a Joint Structure Designed for Space Suit With the Aid of an Origami Technology,” 27th International Symposium on Space Technology and Science (ISTS)). The geometrical arrangement of folds allows a folding mechanism of great efficiency and is often derived from the buckling patterns of simple geometries, like a plane or a cylinder (e.g., Miura-ori and Yoshimura folding pattern) (Wu et al. , 2007, “Optimization of Crush Characteristics of the Cylindrical Origami Structure,” Int. J. Veh. Des., 43 , pp. 66–81; Hunt and Ario, 2005, “Twist Buckling and the Foldable Cylinder: An Exercise in Origami,” Int. J. Non-Linear Mech., 40 (6), pp. 833–843). Here, we interest ourselves to the conception of foldable/unfoldable structures for civil engineering and architecture. In those disciplines, the need for folding efficiency comes along with the need for structural efficiency (stiffness); for this purpose, we will explore nondevelopable foldable/unfoldable structures: those structures exhibit potential stiffness because, when unfolded, they cannot be flattened to a plane (nondevelopability). In this paper, we propose a classification for foldable/unfoldable surfaces that comprehend non fully developable (and also non fully foldable) surfaces and a method for the description of folding motion. Then, we propose innovative geometrical configurations for those structures by generalizing the Miura-ori folding pattern to nondevelopable surfaces that, once unfolded, exhibit curvature.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleDesign and Analysis of a Foldable/Unfoldable Corrugated Architectural Curved Envelop
    typeJournal Paper
    journal volume134
    journal issue3
    journal titleJournal of Mechanical Design
    identifier doi10.1115/1.4005601
    journal fristpage31003
    identifier eissn1528-9001
    keywordsDesign
    keywordsStiffness AND Structures
    treeJournal of Mechanical Design:;2012:;volume( 134 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian